Computers & Security, 8 (1989) 325-344

Refereed Article

Computational

Aspects of

Computer Viruses

Fred Cohen

The Radon Project, Pittshurgh, PA, US.A.

This paper formally defines a class of scts of transitive inte-
grity-corrupting mechanisms called “viral sets™ and explores
some of their computational propertics.

1. Introduction
Q “virus” may be looscly defined as a sequence of

ymbols which, upon interpretation, causcs
other sequences of symbols to contain (possibly
cvolved) virus(cs). If we consider an interpreted
sequence of symbols in an information system as a
“program”, viruscs ar¢ interesting to Computer
systems because of their ability to attach themsclves
to programs and causce them to contain viruscs as
well.

We begin the discussion with an informal discus-
sion of “viruses” 1] based on an English language
definition. We give “pscudo~program” cxamples of
viruses as they might appear in modern computer
systems and usc these examples to demonstrate
some of the potental damage that could resule if
they attack a system. We then formally define a
trivial generalization of “Turing machines”,
define “viral sets” in terms of these machines, and
explore some of their properties. We define a com-
puting machine and a sct of (machine, tape-sct)
pairs which comprise “viral sets” (VS). We then
define the terms “virus” and “cvolution” for con-
venience of discussion. We show that the union of
VSs is also a VS, and that therefore a “largest” VS
(LVS) cxists for any machine with a viral set. We

then define a “smallest” VS (SVS), as a VS of which
no subsct is a VS, and show that for any finite inte-

“ '

ger “i”, there is an SVS with cxactly 7 clements.

We show that any sclf-replicating tape sequence is
a onc clement SVS, that there are countably infinite
VSs and non VSs, that machines exist for which all
tapc sequences are viruses and for which no tape
sequences are viruses, and that any finite sequence
of tapc symbols is a virus with respect to some
machine.

We show that dctarmining whether a given
(machine, tape-sct) pair is a VS is undecidable (by
reduction from the halding problcm) that it is
undecidable whether or not a given “virus” cvolves
into another virus, that any number that can be
“computed” by a TM can be “cvolved” by a virus,
and that therefore, viruses arc at least as powecrful
as Turing machines as a means for compurtation.

2. Informal Discussion

We informally definc a “computer virus” as a pro-
gram that can “infect” other programs by modify-
ing them to include a, possibly evolved, copy of
itselt. With the infecdon property, a virus can
spread throughout a computer system or network
using the authorizations of cvery user using it to
infect their programs. Every program that gets

0167-4048/89/$3.50 © 1989, Elsevier Science Publishers Ltd. 325

F. Cohen/Computational Aspects of Computer Viruses

infected may also act as a virus and thus the infec-
tion spreads.

The followmg psuldo-program shows how a virus
might be written in a pscudo-computer language.
The “:=7 symbol is used for definition, the “7”

“,»

symbol labcls a statement, the “;” separates state-
ments, the =" symbol is used for assignment or
comparison, the “ ~ ™ symbol stands for not, the “{”
and “|” symbols group scquences of statements
together, and the ..." symbol is used to indicate
that an irrclevant portion of code has been left

unspecificd.

program virus: =
11234567,

subroutine infect-executable: =
{loop:file = get-random-cxcecutable-file;
if first-linc~of-file = 1234567
then goto loop;
prepend virus to file;
|
i

subroutine do-damage: =
{whatever damage is to be donef

subroutine trigger-pulled: =
{return truc if some condition holds}

main = prograni: =
{infect-cxecutable;
if trigger-pulled then do-damagge;

gOto Next)

next:|

A Simple Virus “V?”

This example virus “V” scarches for an uninfected
cxecutable file “E” by looking for exccutable files
without the “1234567” at the beginning, and

pends V to E, turning it into an infected file “I7. V
then checks to see it some triggering condition is
truc, and does damage. Finally, V executes the rest
of the program it was prepended to (prepend is
used to mean “attach at the beginning”). When the

326

uscr attempts to exccute E, [is executed in its placc;
it infects another file and then executes as if it were
E. With the exception of a slight delay for infec-
tion, | appears to be E undil the triggering condi-
tion causcs damage.

A virus nced not be used for destructve purposcs
or be a Trojan horse. As an example, a compression
virus could be written to find uninfected execut-
ables, compress them upon the user’s permission,
and prepend itselt to them. Upon cxecution, the
infected program decompresses itself and exccutes
normally. Since it always asks permission before
pgrformmg services, it is not a TI’OJaIl horse, but
since it has the infection property, it is a virus.
Studies indicate chat such a virus could save over
50% of the space taken up by exccutable files in an
average system. The performance of infected pro-
grams decreascs slightly as they are decompressed,
and thus the compression virus implements a par-
ticular time-spacc tradeoff. A sample compression
virus could be written as follows:

program COIHpI’CSSiOI)—ViFUSZ =
101234567,

subroutine infect-executable: =
{loop:file = get-random-cxccutable-file;
it frst-linc-of-file = 01234567 then
then goto loop;
compress file;
prcpcnd compression-virus to file;
i
i

main-program: =
{if ask-permission then infect-
executable;
uncompress the-rest-of-this-file into
tmptile;
run empfile;}

A Compression Virus “C”

This program “C” finds an uninfected exccutable
“E”, compresses it, and prepends C to form an

Computers and Security, Vol. 8, No. 4

infected exccutable “I”. It then uncompresses the
rest of itself into a temporary file and executes nor-
mally. When [is run, it will seek out and compress
another exccutable before decompressing E into a
temporary file and exccuting it. The cffect is to
spread through the system, compressing exccutable
files and decompress them as they are to be
cxecuted. An implementation of this virus has been
tested under the UNIX operating system, and is
quite slow, predominantly because of the time
required for decompression.

As a more threatening example, let us suppose that
we modify the program V by specifying “trigger-
pulled” as truc after a given date and dme, and
specifying “do-damage” as an infinite loop. With
the level of sharing in most modern computer
systems, the entire system would likely become
unusable as of the specified date and dme. A great
deal of work might be required to undo the
damage of such a virus. This modification is shown
here

subroutine do-damage: =

{loop: goto loop;}

subroutine trigger-pulled: =
{if year > 1984 then true otherwise false;)

A Denial of Services Virus

As an analogy to this virus, consider a biological
discasc that is 100% infectious, spreads whenever
people communicate, kills all infected persons
instantly at a given moment, and has no detectable
side cffeces undl that moment. If a delay of even 1
week were used between the introduction of the
discasc and its cffect, it would be very likely to
leave only a few people in remote villages alive, and
would certainly wipe out the vast majority of
modern society. If a computer virus of this type
could spread throughout the computers of the
world, it would likely stop most computcr usage
for a significant period of time, and wreak havoc
on modern government, financial, business, and
academic institutions.

3. Symbols Used in Computability Proofs

Throughout the remainder of this paper, we will
be using logical symbols to definc and prove
thcorems about “viruses” and “machines”. We
begin by detailing these symbols and their intended

Interpretation.

We denote sets by enclosing them in curly brackets
“” and “}” and the elements of sets by symbols
scparated by commas within the scope of these
brackets (eg. {a,b} stands for the sct comprising ele-
ments a and b). We normally use lower casc letters
(eg. a,b,...) to denote clements of sets and upper
casc letters (eg. AB,...) to denote scts themselves.
The exception to this rule is the case where sets are
clements of other scts, in which case they are both
sets and clements of sets, and we use the form most
convenient for the situation.

The set theory symbols €, C, U, and, or, v, iff,
and 3 will be used in their normal manner, and the
symbol N will be used to denote the set of the
natural numbers (i.e. {0,1,...}) and I will be used to
represent the integers (i.e. {1,...}).

The notation {x s.t. P(x)} where P is a predicate will
be used to indicate all x s.t. P(x) is truc.

Square brackets “[” and “]” will be used to group
together statements where their grouping is not
cntircly obvious, and will take the place of normal
language parens.

The “(” and “)” parens will be used to denote
ordered n-tuples (sequences), and clements of the
sequence will be separated by “,”s (e.g. (1,2,...) is the
sequence of integers starting with 1).

The “...” notation will be used to indicatc an
indcfinite number of clements of a set, members of
a sequence, or states of a machine wherein the
indicated clements are too numcrous to fill in or
can be gencrated by some given procedure.

When speaking of scts, we may use the symbol “+”
to indicate thc union of two scts (eg.

327

F. Cohen/Computational Aspects of Computer Viruses

{aj+{b} ={a,b}), the symbol U to indicatc the union
of any number of sets, and the symbol “-” to indi-
cate the set which contains all clements of the first
sct not in the second sct (eg. {a,b}-{a}={b}). We
may also usc the “=" sign to indicatc sct cquality.
In all other cases, we use these operators in their
normal arithmetic sensc. The || operator will be
used to indicate the cardinality of a set or the num-
ber of clements in a sequence as appropriate to the
situation at hand (eg. |{a,b,c}’ =3, f(a,b,...,f)| =6),
and the symbol I when standing alonc will indicate
the “mod” function (eg. 12[10=2).

4. Computing Machines

We begin our discussion with a definition of a
computing machine [2] which will scrve as our
basic computational mode] for the duration of the
discussion. The basic class of machines we will be
discussing is the sct of machines which consist of a
finite statc machine (FSM) with a “tapc head” and a
semi-infinite tape (Fig. 1). The tape head is point-
ing at onc tape “cell” at any given instant of time,
and is capable of reading and writing any of a finite
number of symbols from or to the tape, and of
moving the tape one cell to the left (—1), right (+1),
or keeping it stationary (0) on any given “movc”.
The FSM takes input from the tape, scts its next
state, produces output on the tape and moves the
tape as functions of its internal statc and maps.

tape
+ -+
toooo- + | | cello
Finite tape + -+
State =====>| | cell 1
Machine head + - +

Fig. 1. A Turing machine.

328

A sct of computing machines “TM” is defined as
follows:

YM[M € TM] iff
M: Sy Iyps OpiSyn ¥y = Ly
NSy X1y = Sy
DSy X1y = d)

where the state of the FSM is one of n+1 possible
statcs,

Spt = {800 -es 8} neN

the set of tape symbols is onc of Jj*+1 possible
symbols, and

IM:{i()’---’ ’,} ,/'E{N
the set of tape motions is onc of three possibilitics
d={-1,0, +1}.

We now define three functons of “cme” which
describe the behavior of TM programs. Time in
our discussion cxpresses the number of times the
TM has performed its basic operation, called a
“move” by Turing.

The “state(time)” function is a map from the move
number to the state of the machine after that move
E:IN—S,, sstate(time)

the “tape-contents(time, cell #)” function is a map
from the move number and the cell number on the
tape, to the tape symbol in that ccll after that move
Oy:NXN-1,, stape-contents(time, cell #)

and the “cell(time)” function is a map from the
move number to the number of the cell in front of
the tape head after that move.

Py:IN—-IN seell(dme)

Computers and Security, Vol. 8, No. 4

We call the 3-tuple (8y, Oy, Py), the “history”
(Hy) of the machine, and the Hy, for a particular
move number (or instant in time) the “situation” at
that time. We describe the operation of the
machine as a scrics of “moves” that go from a given
situation to the next situation. The initial situation

of the machinc is described by
(8:(0)=8p0, Ou(0,1) =T pye0.10 Py(0)=P,) iEN

All subsequent situations of the machine can be
determined from the initial situation and the func-
tions “N”, “O”, and “D” which map the current
state of the machine and the symbol in front of the
tapc hcad beforc a move to the “next state”,
“output”, and “tape position” after that move. We
show the situation here as a function of time

VieN
[Bua (1) = NBu(1), B (6, Pu(9))] and
[B w1, Py () = 0B (£), B (. Pp(1))] and
[/ # Py(t), Op(t+1,/) =B (1,)] and
[Pu(r+1) = Sup(0, Py (£)+D(8 (). (1. Pi(1)))]

These machines have no explicit “halt” state which
guarantees that from the tme such a state is
entered, the situation of the machine will never
change. We thus define what we mean by “halt” as
any situation which does not change with time.

We will say that “M Halts at time ¢” iff
[Ve>1t |

[8:(8)=8u()] and

[Vi €EN[Oy(t, /)= Op(¢,)] and

[Pu(6)=Pu(2)]]
and that “M Hales” iff

[3rN[M Halts at time ¢]]
We say that “x runs at time ¢” iff

[[x € Ly where i € 1] and
[8(r)=8,] and

(@ (6 P(3).. (6P 4 1) =]
and that “x runs” iff

[3t EIN[x runs at time ¢]]

As a matter of convenience, we define two struc-
tures which will occur often throughout the rest of
the discussion. The first structure “TP” is intended
to describe a “Turing machine Program”. We may
think of such a program as a finitc sequence of
symbols such that cach symbol is a member of the
legal tape symbols for the machine under con-
sideration. We define TP as follows:

[YMETM[vv[viell
[ve TP, |ifflve L,]]]]

The second structure “TS” is intended o describe a
non-cmpty sct of Turing machine programs
(Turing machine program Sct) and is defined as

[YME TM[VV[V € TS]iff
i) [3vE V] and
ii) [YvE V[ve TP]]]]

The usc of the subscript M (e.g. TPy,) is unnccessary
in those cases where only a single machinc is under
consideration and no ambiguity is present. We will
thercfore abbreviate throughout this paper by
removing the subscript when it is unnecessary.

5. Formal Definition of Viruses

We now define the central concept under study,
the “viral set”. In carlier statements, we have infor-
mally defined a “virus” as a “program” that modi-
fics other “programs” so as to include a (possibly
“cvolved”) version of itsclf. The mathematical
cmbodiment of this dcfinition for Turing
machines, given below, attempts to maintain the
generality of this definition.

Several previous attempts at definition failed
because the idea of a singlcton “virus” makes the
understanding of “cvolution” of viruses very diffi-
cult, and as we hope to make clear, this is a central
theme in the results presented herein. The viral set
cmbodics evolution by allowing clements of such a
set to produce other clements of that sct as a resule
of computation. So long as cach “virus” in a viral
sct produces some element of that viral set on some

329

F. Cohen/Computational Aspects of Computer Viruses

part of the tape outside of the original virus, the sct
is considered “viral”. Thus “cvolution” may be
described as the production of one clement of a
viral sct from another clement of that sct.

The sequences of tape symbols we call “viruses”
depend on the machine on which they are to be
interpreted. We may expect that a given sequence
of symbols may be a virus when interpreted by one
TM and not a virus when interpreted by another
TM. Thus, we define the pair “VS” as follows:

We will now review this definidon line by line

330

For convenicnce of space, we will use the cxpression
"
a=> C

to abbreviate part of the previous definition start-
ing at linc [4] where a, B, and C are specific

1] YMVYV

2] (M,V)e VSiff

3 [VETS] and [METM] and

4 [Vve V|VHy

5 [Vevj

6 [Py(f)=jand

7 Su(f)=Sue and

g | (Om(tf)se s Oyt~ |v| 1) = v

10] [WeEV[E> 3y

) |G VD <o [~ [v]) <7 and
12] (@Mt Yo B j |V [—1)) =V and
13] [3t"s.e[t<¢"<(]and

14 Pult") € e+ 1V 1]

s M

1] forall “M” and “V”,

2] the pair (M, V) is a “viral set” if and only if:

3] Visanon-empty sct of TM scquences and M is a TM and

4] for cach virus “v” in V, for all historics of machine M,

5 For all times rand cells f

6 if the tape head is in front of cell f at time fand

7 TM is in its initial statc at time ¢ and

8 the tape cells starting at j hold the virus v

9 then

10] there is a virus v/ in V, a time £ > 1, and place /' such that
11] at placc /' far cnough away from v

12] the tape cells starting at ;' hold virus v/

13] and at some time ¢’ between time ¢ and dme ¢
14] v'is written by M

Computers and Security, Vol. 8 No. 4

instances of v, M, and V respectively as follows:
[VB[¥C
[(M,C) e VS]iff
[[CETS] and [M € TM] and

vaeCla = CI[I

We have defined the predicate VS over all Turing
machines. We have also stated our definition, so
that a given element of a viral set may generate any
number of other elements of that set depending on
the rest of the tape. This affords additional gener-
ality without unduc complexity or restriction.
Finally, we have no so-called “conditional viruses”
in that EVERY clement of a viral set must
ALWAYS generate another element of that sct. If a
conditional virus is desired, we could casily add
conditionals that cither cause or prevent a virus
from being cxecuted as a function of the rest of the
tape, without modifying this definition.

We may also say that V is a “viral set” with respect
toM

iff [(M, V) € VS]
and definc the term “virus” with respect to M as
{[veV]st [M,V)e VS]}

We say that “v evolves into v’ for M” iff

[(M,V)E VS y
[[vEV]and [v'EV]and [v = {v'l]]

that “v' is evolved from v for M” iff
“v evolves into v’ for M”

and that “v’ is an cevolution of v for M” iff

[(M,v)EVS

FieN[VeV
[vEV]and [v'€V] and

{z/lvk f\lV'[Vk L Vk+1]] and
[
[ImEN
[l <m] and [v;=Vv]

and [v,, = v'[]I]]]]

.. M
In other words, the transitive closure of = start-
ing from v, contains v'.

6. Basic Theorems

Our most basic theorem states that any union of
viral sets is also a viral set

Theorem 1:

YMYU*
[V E U*s..(M,V)E VS| =
[(M, UU¥ e VS

Proof:

Define U= U U*

by definition of U
) [VveU[EVEU*stveV]]
2)[vveUrvveVveU]|]

Also by definition,
[(M,U) e VS] iff
[[UE€ TS| and [M &€ TM] and

[YveU = U]

by assumption,

[vweu*
pve Vi 2 v
thus since
[FveUpRVeU*|v == V]|
and [vVeUr vcU]]

[FveUIVCU[v = V]]]

331

F. Cohen/Computational Aspects of Computer Viruses

henee [VveUlv X U]

thus by definition, M, U)e Vs
QED.

Knowing this, we prove that there is a “largest”
viral set with respect to any machine, that set being
the union of all viral scts with respect to that
machine.

Lemma 1.1:
[YMETM
[BVs.t[M,V)EVS]| =
[FU
i) [(M,U)€ VS] and
i) [YV[[(M,V)EVS] =
[vevive U

We call U the “largest viral set” (LVS) w.r.t. M, and
define

(M, U)E LVS ift]i and ij]

Proof:
assume [IV[(M, V)€ VS]]

choose U= U{Vs.t [[M,V)EVS]
now prove i and i
Proof of i (by Theorem 1)
MU {Vse [(MV)EVS])eVS
thus M, U)e Vs

Proof of ii by contradiction:
assumc i) is false:
thus [FVs.t
1) [(M,V)E VS] and
2y[AvE Vst [vE U]

but [VVs.t. (M,V)EVS
[VveVveU]]]

thus [v&U]and [vE U]

thus ii) is true

QED.

(definition of union)
(contradiction)

Having defined the largcst viral set with respect to
a machine, we now define a “smallest viral set” as a

332

viral sct of which no proper subsct is a viral set
with respect to the given machine. There may be
many such scts for a given machine.

We define SVS as follows:

[YM[yV
[(M, V)€ SVS] iff
1) [(M, V)€ VS] and
2) [(3U s.t.
[U < V] (proper subsct) and
[(M0) < VS]]

We now prove that there is a machine for which
the SVSis a singleton st and that the minimal viral
sctis therefore singleton.

Theorem 2:

[M[3V
i) [((M,V)€SVS] and

ii) [|V]=1]]]

Proof: by demonstration
M:S={s,,s,}, [={0,1},

SXI N O D

Sgs0 So 0 0
Sy 1 S, l +1
$;,0 Sy 1 0
sy, 1 S 1 +1

[{(1)}| = 1 (by definition of the operator)

[(M{(1)}) € SVS] iff
) [(M{(1)) € VS| and
2) [(M{}) & VS]

(M.{})€ VS (by definition since {} & TS)

as can be verified by the reader:

(1) = (1)
thus M) E VS
QED.

(f=1=2,t"=t+1,/'=j+1)

Computers and Security, Vol. 8, No. 4

With the knowledge that the above sequence is a
singleton viral set and that it duplicates itself, we
suspect that any sequence which duplicates itsclf is
a virus with respect to the machine on which it is

self-duplicating.
Lemma 2.1:

[VM € TM[VuE TP
(o = {u)] = [(Mfuh)E VS]]

Proof:
by substitution into the definition of viruses:
[YM € TM[V{u}
[[(M,{u}) € VS] iff "
il e TS and [a =2 {u]]

The cxistence of a singleton SVS spurs interest in
whether or not there are other sizes of SVSs. We
show that for any finite integer i, there is a
machinc such that there is an SVS with 7 clements.
Thus, SVSs come in all sizes. We prove this fact by
demonstrating a machine that generates the
“(xmod 7)+17th element of a viral set from the xth
clement of that set. In order to guarantce that it is
an SVS, we force the machine to halt as soon as the
next “cvolution” is generated, so that no other cle-
ment of the viral set is generated. Removing any
subsct of the viral sct guarantces that some clement
of the resulting set cannot be gencrated by another
clement of the set. If we remove all the clements
from the set, we have an cmpty set, which by
definition is not a viral set.

since [[u€TP] = [{u}€ TS]] (definition of TS) Theorem 3:
and by assumption, [viel
[u = {u]] [IMeTM[3V
[(M,ju) e VS] 1) [(M,V) €5VS] and
. 2 [[V] =]
Proof: By demonstration
M: S ={5,,8,,..0,8;}, [={0,1,...,i},
VX efl,..,i}
SxI N O D
S,,0 So 0 ;1f [=0, halt
SpsX S, X +1 ;if I=x, goto state x, move right
;other states generalized as:
Se¥ Sy [x]i]+1 0 swrite [x]i]+1, hale
proof of 1) proof of “1) (M,V) EVS”

define V={(1),(2),....(i)}
|V| =i (by definition of operator)

proof of ii)
[(M,V)eSVS]iff
1) [M,V)€ VS] and
2) [fu[[UC V] and [(M,U) € VS]]]

(1) = {(2))

(f=t+2,"=1+1,
J=it)

(i—1) 2 () (¢ =r+2 ¢ =1+1,

o om J=j+)

@) = (O =r+2,"=1+1,
J'=j+1)

and (1)EV,...,and () EV

(as can be verified by simulation)

333

F. Cohen/Computational Aspects of Computer Viruses

thus, [vveV[v = V||
SO (M,V)EVS
proof of “2) [AU[[U € V] and [[M,U) € VS]]’
given [Itj€N[IvEV
[19()=v] and
[8(r)=8,] and
[B()) =1

[[M halts at time £+ 2] and
[v]i] +1is written at j + 1 at £+ 1]]]
as can be verified by simulation
Y

=

and |Vx€{1,...,i}[(x) € V]] (by definiton of V)

and [YXE {1} [x = {[x]i]+ 1}]]

we conclude that:
[x|7]+ 1 is the ONLY symbol written
outsidc of (x)

thus [Ax# [x|i]+ 1]x = {x"]]
now [V(x)EV
@11+ D&V = (e V)

assume [FU C V[(M,U) € VS]]

[U={l] = [(M,U)& VS] thus U # {}
by definition of proper subsct

[UCV] = [veV[ve U]

but [veVve U]
= [Iv'E U[[V” iJ+1=v]
and [v & U]
and [v' € V[V’ = v'||]
thus [iveU[V' = V]|
and [v'€ U]
thus [(M,U) & VS] which is a contradiction
QED.

7. Abbreviated Table Theorems

We now move into a scrics of proofs that
demonstrate the cxistence of various types of
viruses. In order to simplify the presentation, we
have adopted the technique of writing “abbreviated
tables” in placc of complete state tables. The basic
principal of the abbreviated table (or macro) is to

334

allow a large set of states, inputs, outputs, next
states, and tape movements to be abbreviated in a
single statement. These “macros” arc simply abbre-
viations and thus we display the means by which
our abbreviations can be cxpanded into state tables.
This technique is essentially the same as that used
in ref. [2], and we refer the reader to this manu-
script for further details on the usc of abbreviated
tables.

In order to make cffective use of macros, we will
use a convenient notation for dcscribing large state
tables with a small number of symbols. When we
define states in these state tables, we will often refer
to a statc as S, or S,_, to indicate that the actual
statc number is not of import, but rather that the
given macro can be used at any point in a larger
table by simply substituting the actual state
numbers for the variable state numbers used in the
definition of the macro. For inputs and outputs,
where we do not wish to cnumerate all possible
input and output combinations, we will usc
variables as well. In many cascs, we may describe
entire ranges of values with a single variable. We
will attcempt to make these substitutions clear as we
describe the following set of macros.

The “hale” macro allows us to halt the machine in
any given state S, We usc the “*” to indicate that
for any input the machine will do the rest of the
specified function. The next state entry (N) is S, so
that the nexe state will always be S,. The output (O)
is * which is intended to indicate thar this scate will
output to the tape whatever was input from the
tape. The tape movement (D) is 0 to indicate the
tape cell in front of the tape head will not change.
The reader may verify that this meets the condi-
tions of a “halt” state as defined carlier.

name S,1 N O D

halt S, S, * 0
(halt the machinc)

The “right dll x” macro describes a machine which
increments the tape position (P(t)) untl such posi-

Computers and Security, Vol. 8, No. 4

tion is reached that the symbol x is in front of the
tape head. At this point, 1t will cause the next state
to be the state after S, so that it may be followed by
other state table entrics. Notice the use of “cls¢” to
indicate that for all inputs other than x, the
machine will output whatever was input (thus
lcaving the tape unchanged) and move to the right
one square.

name S,1 N O D
R(x) S,px N x 0
S,»clse S, clse +1

(R(x): right dill x)

The “left till x” macro is just like the R(x) macro
except that the tape is moved lefe (—1) rather than
right (+1).

namce S, N O D
L(x) S,.x S, X 0
S, clse S, clse —1

(L(x): lefe all x)

The “change x to y until 2” macro moves from left
to right over the tape until the symbol z is in front
of the tape head, replacing cvery occurrence of x

with y, and lcaving all other tape symbols as they
were.

name S,I N O D

C(x,7,2) Sz S, - z 0
S..x S, ¥y +1
S, .clse S, clse +1

(C(x,,2): change x to y till 2)

The “copy from x dll y after 2” macro is a bit more
complex than the previous macros because its size
depends on the number of input symbols for the
machinc under consideration. The basic principal is
to define a set of states for cach symbol of interest
so that the sct of states replaces the symbol of inter-
est with the “left of tape marker”, moves right unil
the “current right of tapc marker”, replaces that
marker with the desired symbol, moves right one
more, places the marker at the “new righe of tape”,
and then moves left until the “left of tape marker”,
replaces it with the original symbol, moves right
onc tape square, and continucs from there. The
loop just described requires some initalization to
arrange for the “right of tapc marker” and a test to
detect the y on the tape and thus determine when
to complete its operaton. At completion, the
macro gocs onto the state following the last state
taken up by the macro and it can thus be used as
the above macros.

335

F. Cohen/Computational Aspects of Computer Viruses

name S, N O D
CPY(x,y,2) (copy from x dll y to after z)

S, R(x) ; righe dll x

s S, “N” 0 - write “N”

S, R(y) ; right all y

S, R(z) ; right dill 2

S, S, : z +1 ; right onc more

S S . “M" 0 - write “M”

S, L(“N™) ; lefe all “N”

S, .- S, x X 0 ; replace the inidal x

Syaw ¥ S, y | ;if y, donc

S en ¥ Sy s “N” -1 ; else write “N” an

;goto S, 5 times the input
; symbol number

R(M) ; right dll “M”
S, y 0 ; copy completed
R(*M™) ; goto the “M”
Seo5v.» * +1 ; write the copied symbol
Sis oy “M” 0 ; write the trailing “M”
L(*N™) ; lefe all “N”
S, .« * +1 ; rewrite * and go on

For cach of the above macros (except “hale”), the
“arguments” must be specitied ahead of time, and it
the tape is not in such a configuradon that all of
the required symbols arc present in their proper
order, the macros may cause the machine to loop
indefinitely in the macro rather than leaving upon
completion.

We now show that there 1s a viral set which is the
size of the natural numbers (countably infinite), by
demonstrating a viral sct of which cach clement
generates an clement with one additional symbol.

336

Since, given any clement of the set, a new clement
is generated with every cexecution and no pre-
viously gencrated clement is ever regencrated, we
have a set gencrated in the same inductive manner
as the nataral numbers, and there is thus a one-to-
one mapping to the integers from the gencrated set.

Theorem +:

[MeTMIVETS st
1) [(M,V)E VS| and
2) IV =[]}

Computers and Security, Vol. 8, No. 4

Proof by demonstration:

S, N O D
M: SoL S, L +1 s start with L
S,clse So X 0 ; or halt
S,,0 C(0,x,R) ; change 0s to xs dll R
S,R S, R +1 ;write R
S, S, L +1 ;write L
S, S; X 0 ; write X
S5 L(R) ; move left dll R
S, L(xorL) ; move left till xor L
S,,L Sh L 0 ;if L goto s11
S5,x Sy 0 +1 ; if x replace with 0
Se R(x) ; move righe dll x
Sy,x Sio 0 +1 ; changc to 0, move right
Sio S; X 0 ; write x and goto S5
Sy R(x) ; move right all x
S)» Sis 0 +1 ;add onc 0
Sy, Sis R 0 ; halt with R on tape
={(LOR), (LOOR,)...., (LO...OR),...| not viral scquences, thus proving that no finite state
machinc can be given to determine whether or not
proof of 1) (M,V) € VS a given (M, V) pair is “viral” by simply enumerating
definition: all viruses (trom Theorem 4) or by simply
[YMETM[VV cnumerating all non viruses (by Lemma 4.1).

[(M, V)€ VS] iff
[[VETS] and [VvE V]v LN VI
by inspection,
[VeTs]
now [V(LO...OR)[3(LO.. OOR) ev
(L0~ OR) 410 0oR]
as may be verified by simulation
thus [(M,V)e VS|
proof of 2) lV| = ||N
[Vv,€V[Iv,. EV
[Vk<n
[AviEVIvi=v,]ll]

this is the same form as the definiton of N, hence
V] =|N]|
QED.

As a side issuc, we show the same machine has a
countably infinitc number of sequences that are

Lemma 4.1:

[(IMeTM[IWETS

Wi

=|IN|] and

2 [yweWEW c W
[w = Wil

Proof:

using M from Theorem 4, we choose

W ={(x), (3.

X)),

.
clearly [METM]and [WETS] and [|W’ ’[N']

since (from the state table)

[VweE W [w runs at time] =>
[w halts at time 1]
(A7 > ([Pu{f)# Py(9)]]
thus [VweEW[EIW CW[w = W||

QED.

337

F. Cohen/Computational Aspects of Computer Viruses

It turns out that the above casc is an example of a
viral set that has no SVS. This is because no matter
how many clements of V arc removed from the
front of V, the st can always have another clement
removed without making it non-viral.

We also wish to show that there are machines for
which no sequences are viruses, and do this trivially
below by defining a machine which always halts
without moving the tape head.

Lemma 4.2:

[EMETM[EVETS[(M.V) € VS]]]

Proof by demonstraton:

w()=P,]])

(trivially verified that [Ve[P
QED.

We show that for ANY finite sequence of tape
symbols “v”, it is possible to construct a machine
for which that sequence is a virus. As a side issuc,
this particular machinc is such that LVS =SVS, and
thus no scquence other than “v” is a virus with
respect to this machine. We form this machine by
gencrating a finite “recognizer” that examines
successive cells of the tape and halts unless cach cell
in order is the appropriate clement of v. If cach cell

1s appropriate we replicate v and subsequently hale.

Theorem 5:

[vvE TP[IM € TM[(M.{v}) € VS]]]
S,1 N O D]
Proof by demonstration:
M: s0,all s0 0 0 v={v,v,,...,v;} where [k EN] and [vET]
(definition of TP)
S,1 N O D
M: S5V s v, +1 (recognize 1st clement of v)
s,,Clsc S, 0 0 (or halr)
(cte all)
Sks Vic Sk v, +1 (recognize kth element of v)
s.clse So 0 0 (or haly)
Skt 1 Sk v, +1 (output 1st clement of v)
(ctc ull)
Sktk Skl vy -0 (output kth clement of v)

itis trivially verified that [v > {vi]
and hence (by Lemma 2.1) [(M,{v}) € VS|
QED.

With this knowledge, we can casily generate a
machine which recognizes any of a finite number of
finite scquences and gencrates cither a copy of that
scquence (if we wish each to be an SVS), another
clement of that set (if we wish to have a complex
dependency between subscquent viruses), a given
scquence in that set (if we wish to have only onc

338

SVS), or cach of the clements of that sct in
sequence (if we wish to have LVS = SVS).

We will again define a set of macros to simplity
our task. This time, our macros will be the “recog-
nize” macro, the “gencerate” macro, the “if-then-
clse” macro, and the “pair” macro.

Computers and Security, Vol. 8, No. 4

The “recognize” macro recognizes a finite sequence
and leaves the machine in one of two statcs
depending on the result of recognition. It leaves the
tape at its initial point if the sequence is not recog-
nized so that successive recognize macros may be

Sl N O

uscd to recognize any of a set of sequences starting
at a given place on the tape without additional dif-
ficulties. It leaves the tape at the ccll one past the
cnd of the sequence if recognition succeeds, so that
another sequence can be added outside of the
recognized sequence without additional difficulty.

recognize(v) for v of size z

N Sy Vo
* *
Sn’ Sn"z‘z*l
St Vi Sty M
S * *
n—ks nrzrz—k
Sn'zfl’vz Sn*z‘z Va
*
Sn*z*] ’ Sn*z Vz
*
n+z> Sn-rz*l
Sn«rz*z*l
S n-z-z

The “gencrate” macro simply gencrates a given
sequence starting at the current tape location:

S, N O D
gencrate(v) where v is of length k

S, N v, +1
Sn+k Sn+k+l Vi +0

The “if-then-else” macro consists of a “recognizc”
macro on a given sequence and goces to a next state
corresponding to the initial state of the “then”
result if the recognize macro succeeds and to the
next state corresponding to the initial state of the
“clse” result if the recognize macro fails

S N O D
if (v) (then-state) else (elsc-state)

S, recognize(v)

Sutzjv-10 else-state 0
Suiafups then-state * 0

D

+1 (recognize Oth clement)
0 (or rewind 0)

(ete till)

+1 recognize kth clement)

-1 or rewind tape)

(etc ull)

+1 recognize the last onc)

-1 rewind tape one squarc)

(
(
(
+1 (or rewind tapc)
(
(for cach of k states)

(“didn’t recognize” state)
(“did recognize” state)

The “pair” macro simply appends one sequence of
states to another and thus combines two sequences
into a single sequence. The resulting state table is
just the concatenation of the state tables

S,1 N O D
pair(a,b)

S, a

S b

We may now write the previous machine “M” as
if (v) (pair(gencrate(v), halt)) else (halt)

We can also form a machinc which recognizes any
of a finite number of scquences and generates
copies,

if (v,) (pair(generate(v,),halt)) clse

if (v,) (pair(generate(v,), halt)) else

if (v) (pair{generate(vy)halt) clsc (hale)

339

F. Cohen/Computational Aspects of Computer Viruses

a machine which gencrates the “next” virus in a
finite “ring” of viruses from the “previous” virus
g

if (v,) (pair(gencrate(v,), hale)) clse
if (v,) (pair(generate(v,),halt)) clse

1f (vi) (pair(gencrate(v,), halt)) clse (halr)

and a machine which generates any desired

dependency.

if (v,) (pair(gencrate(v,), halt)) clse
if (v,) (pair(gencrate(v ,)-halt)) clse

if (v1) (pair(gencrate(v.) halt)) clsc (halt)

where v, v V.EV,, ., v

X Yy eees

We now show a machine tor which every sequence
is a virus, as is shown in the following simple
lemma.

Lemima 5.1:

[IMETM
[VveTP[3V
[[vE V] and [(M,V)eLVS]]]]]

Proof by demonstration:

I={x},5=15,}
S.1 N O D
M: S,.x Sy X +1

trivially seen from state table:
[V cime t[V8[VP|not M hales|]]]
and [VYnE N[VvEI"

[[v 2> {(X)}] and
[(M.{(X).v}) ELVS]|]]
hence [VvE TP[(M,{v,(X)})E VY]
and by Theorem 1, [IV[[vE V] and [(M,V) ELVY]]]
QED.

340

8. Computability Aspects of Viruses and
Viral Detection

We can clearly gencrate a wide varicty of viral sets
and the usce of macros is quite helpful in pointing
this out. Rather than follow this line through the
enumeration of any number of other examples of
viral sets, we would like to determine the power of
viruses in a more general manner. In partdcular, we
will explore three issucs.

The “decidability” issuc addresses the question of
whether or not we can write a TM program
capable of determining, in finite dme, whether or
not a given sequence tor a given TM is a virus. The
“evolution” issuc addresses the question of whether
we can write a TM program capable of determin-
ing, in a finitc tme, whether or not a QDIVLII
sequence for a given TM gulcraus »another given
sequence for that machine. The “computability”

issuc addresses the question ot determining che
class of sequences that can be “evolved” by viruses.

We now show that it is undecidable whether or
not a given (M, V) pair is a viral set. This is done by
reduction from the haleing problem in the following
manner. We take an arbitrary machine M' and tape
sequence V', and generate a machine M and tape
sequence V such that M copices V' from inside of V,
simulates the execudon of M on V', and 1f V' hales
on M" replicates V. Thus, V replicates itself if and
only if V' would halt on machine M". We know
that the “halting problem™ is undecidable [2], that
any program that replicates itselt is a virus [Lemma
2.1], and thus that [(M,V) € VS] is undecidable.

Theorem 6

[ADEeTM[3s, €5,
[YMeTM[FVETS
1) D halts] and
) Isuld=s (V) € VS]]

Computers and Security, Vol. 8, No. 4

“Proof by reduction from the Halting Problem:

[VMETM[HM €TM
[“L”@ Ly] and [“R”@ Ly] and
[“1” & [y] “and [“ " L] and
[VSmily = “r"] =
[Ny =Sy] and [Op =17
and [Dy = +1]|]
and [VSy
[Ny =Sy] and [Oy =1y] and [Dy, =0]]
= [[Ny =5,] and [Oy =1y] and [Dy, = 0]]]
I

We must take some carc in defining the machine
M’ to cnsurc that it CANNOT writc a viral
scquence, and that it CANNOT overwrite the cri-
tical portion of V which will cause V to replicate if
M’ halts. Thus, we restrict the “simulated” (M, V')
pair by requiring that the symbols L,R,],r not be
used by them. This restriction is without loss of

gencrality, since we can systematically replace any
occurrences of these symbols in M’ without chang-
ing the computation performed or its halting
. s et o o
characteristics. We have again taken special care to
ensurc that (M',V') cannot interferc with the
sequence V by restricting M so that in ANY state, if
the symbol “I” is encountered, the state remains
unchanged, and the rape moves right by onc
squarc This cffcctivdy simulatcs thc “scmi inﬁ—
arca outs1dc of V. Fmally, we havc I‘LStI‘lCtCCl M’
so that for all states such that “M halts”, M’ gocs
to statc S,.

now by [2]
BDETM
[VM'€ TM[vV' € TS
1) [D halts] and
2) [Si(t) =s,] i [(M", V') halss]]]]

We now construct (M,V) s.t.
[(M, V)€ VS]iff [(M",V') Halts]

as follows:

S,1 N O D

M: Sy,L S, L 0 ;1f “L” then continue
So-clse Sa X 0 ; else halt
S, CPY(*I",“r",“R") ; Copy from 1 dll r after R
S, L(-L") lefe tll “L”
S, R(“R”) ; right all “R”
S, S5 1 -1 ; move to start of (M| V')
S, M/ ; the program M’ goes here
S, L(*L™) ; move left till “L”
S, CPY(“L” *R",“R") . Copy from L dll R after R

={(L,LV',r,R)}

Since the machine M requires the symbol “L” to be
under the tape head in state S, in order for any
program to not halt immediately upon exccution,
and since we have restricted the simulation of M’
to not allow the symbol “L” to be written or con-
tained in V', M" CANNOT generate a virus.

VEEN[VS,, <,
[APu(9[[1 # “L"] and [O ="“L"]]]

This restrices the ability to gencrate members of VS
such that V only produces symbols outside itself
containing the symbol “L” in statc S, and S, |, and
thus these are the ONLY states in which replica-
tion can take placc Since S, can only write “L™ if it
is alrcady present, it cannot be used to write a virus
that was not previously present.

[V!‘EN[VS(S S<S,)
[not[M" halts at time 1])

and [Py(r+1) not within V|||

341

F. Cohen/Computational Aspects of Computer Viruses

If the execution of M’ on V' never halts, then S|
is never reached, and thus (M, V) cannot be a virus.

[VZETPs.t.Z, # “L’]
[M run on Z at time 1]
=> [M hales at time 1+1]
[(M',V") Halts] iff
[AtENs... 8,=5.,
thus [not{M’,V') Halts] = [(M,V)& VS)]

Since S, replicates v after the final “R” in v, M’
halts implics that V is a viral sct with respect to M

[FtENs.ty =s,.] =

Ve Vst|v == (Vi]]
and from Lemma 2.1
[fvEVV £ V] = [(M,V)E VS|
thus [(M, V)€ VS]iff (M, V') Halts]
and by [2]
[IDETM
[YM'ETM[vVV' € TS
1) [D halts] and
2) [Sp(t) =s,] itt [(M', V') halts]]]]

()’L Su’

[
CPY(“L”,“R",“R")
L(“L")

CPY (“I",“r",“R")
L(“L™)

R(“r”)

S r
M f

L(“L™)

R(“R”)

[

Py

P)

- te —

generate(v')

i

assume [v'is a virus w.r.. M|

since [S,.; is reached] iff [(M', V') halts]
thus [v'is gencrated] ift [(M', V') halts]
QED.

342

welse S X

S()AL, “R”

thus
FDeTM

[fMETM[vVETS

1) [ID halts] and

2 [50()=5.] HE (M.V) € VS]]
QED.

We now answer the question of viral “cvolution”
quite casily by changing the above example so that
it replicates (state 0') before running V' on M/, and
generates v’ iff (M',V') hales. The inidal self-repli-
cation forces [(M,V) € VS], while the generation of
v'iff (M, V') halts, makes the question of whether
v' can be “cvolved” from v undecidable. v' can be
any desired virus, for example v with a slighdy
ditferent sequence V” instcad of V.

Lemma 6.1:
[ZDeTM
[V(M,V)E VS
[VveEV[VYY
1) [D halts] and N
3 ISt =S, v 2
sketch of proot by demonstration:
modity machine M above s.t:

0 ;if “L” then continuc
0 ; else hale
; replicate initial virus
; return to replicated “L”
; Copy from 1 dll r after R
slefe all “L”
; right till “R”
-1 ; move to start of (M, V')
; the program M’ goces here
; move left dll “L”
; move righe dll “R”
+1 ; get into available space
;and generate v’

Computers and Security, Vol. 8, No. 4

We arc now ready to determine just how powerful
viral evolution is as a mcans of computation. Since
we have shown that an arbitrary machine can be
cmbedded within a virus (Theorem 6), we will now
choose a particular class of machines to embed to
get a class of viruses with the property that the
successive members of the viral set generated from
any particular member of the set, contain subse-
quences which are (in Turing’s notation) successive
iterations of the “Universal Computing Machine”
[2]. The successive members are called “evolutions’
of the previous members, and thus any number
that can be “computed” by a TM, can be “evolved”
by a virus. We therefore conclude that “viruses™ are
at lcast as powerful a class of computing machincs
as TMs, and that chere is a “Universal Viral
Machine” which can cvolve any “computable”
number.

Theorem 7:
[YM'€TM[3(M,V)E VS
[VieN
[VxE{0,1}[xEHy]
[3\/ = V[Hv/ eV
[[v “cvolves™ into v']and [xC V']

1

Proof by demonstradon:
by [2]:
[PM'E€ TMEUTM E TM[3*D.N"E TS
[viEN ’
[VxE{0,1} [x€ Hy]]]]]|

Using the original description of the “Universal
Computing Machine™ [2], we modity the UTM so
that cach successive iteration of the UTM interpre-
tation of a “ID.N" is donce with a new copy of the
“D.N” which is created by replicating the modified
version rcsulting from the previous iteration into
an arca of the tape beyond that used by the pre-
vious iteration. We will not write down the entire
description of the UTM, but rather just the
relevant portions.

SxI N O D
b: t(b,,b,, ") ; initial states of UTM print out
b R.R,P;,R.R,PD,R,R,PA anf ; DA on the f-squares after:
anf: ; this is where UTM loops
; the interpretation states follow
ov: anf ; and the machine loops back to anf
We modify the machine as in the case of Theorem and [VSermllutm =“R7] =

6 cxcept that

we replace:

ovi anf

ov: glov',“r")

ov: L(“L")

ov”: CPY(“L”,“ R”,“R”)
ov”: L(“L”)

; goto “ant”

; write an “r”

; go lefe dll “L”

; replicate virus

s lefe dll stare of
the evolution

; right dill
marked “r”

; goto “anf”

with:

Y HH: R(“r”)

mn,

anf

ov

(move right 1, write “R”, move lefe 1,
continuc as before)

The modification of the “anf” stace breaks the nor-
mal interpretation loop of the UTM, and replaces
it with a replication into which we then position
the tape head so that upon return o “anf” the
machine will operate as before over a difterent por-
tion of the tape. The second modification ensures
that from any state that reaches the right end of the
virus “R”, the R will be moved right onc tape
square, the tape will be repositioned as it was

343

F. Cohen/Computational Aspects of Computer Viruses

before this movement, and the opcranon will pro-
ceed as before. Thus, tape expansion does not
climinate the right side marker of the virus. We
now specify a class of viruses as

(“L”,“I).N”,“}{”)

and M as:

SX1 N O D

SeL S, L +1 ;start with “L”
Sexclse S, else 0 ;orhale
S,... ; states from modified UTM

Fred Cohen rcccived a BS. degree in

clectrical engincering from Carnegic-

oS o

Mellon University in 1977, an MS.

degree in information science from the

University of Pittsburgh in 1981, and a

. Ph.D. degree in clectrical engineering
from the University of Southern Cali-

Compuur Science and Electrical Engi-

3 ncering at Lehigh University from Janu-
ary 1985 through April 1987, a professor of Electrical and
Compurer Enginecring at The University of Cincinnati from
Scptember 1987 through to December 1988, and is currently
Director of The Radon Project in Pitsburgh. He is a member

of the ACM, IEEE, the ASEE, and the IACR and a member of

the international board of reviewers of the IFIP/TCI1 journal,
Computers & Security.

Dr. Cohen has published over 20 professional articles, has
recently completed a graduate texr titled Intreductory Information
Protection, and has designed and implemented numcerous
devices and systems. He is most well known for his ground-
breaking work in computer viruscs, where he did the first in-
depth mathematical analysis, performed many startling
experiments which have since been widely confirmed, and
developed the first protection mechanisms, many of which are
now in widespread use. His current research interests are con-
centrared in high integricy systems.

344

fornia in 1986. He was a professor of

References

[1] F. Cohen, Compurer viruses — theory and experiments, 7l
Security Conf,, DOD/NBS, September 1984,

[2] A. M. Turing, On computable numbers, with an applica-
tion to the Entschcidungsproblcm. Proc. London Math. Soc.,
+2(2) (1936) 230-205.

