
Computers & Security, 8 (1989) 325-344 

Refereed Article 

Computational 
Aspects of 
Computer Viruses 

This paper formally defines a class of sets of transitive inte- 

griry-corrupting n~cchanisms called “viral sets” and cxplorcs 

some ofethcir con~putational properrics. 

1. introduction 

A 
“virus” may bc loosely d&cd as a sequcncc of 
ymbols which, upon interpretation, causes 

other scqucnccs of symbols to contain (possibly 
cvolvcd) virus(cs). If WC consider an intcrpretcd 
scquencc of symbols in an information system as a 
“program”, viruses arc intcrcsting to computer 
systems bccausc of their ability to attach thcmsclvcs 
to programs and cause them to contain viruses as 
WCll. 

WC begin the discussion with an informal discus- 
sion of “virus? [l] b ascd on an English language 
definition. WC give “pseudo-program” cxamplcs of 
viruses as they might appear in modern computer 
systems and use these cxamplcs to dcmonstratc 
some of the potential damage that could result if 
they attack a system. We then formally d&c a 
trivial generalization of “Turing machines”, 
define “viral sctsn in terms of thcsc machines, and 
cxplorc sonic of their properties. WC d&c a com- 
puting machine and a set of (machine, tape-set) 
pairs which comprise “viral sets” (VS). WC then 
define the terms “virus” and “evolution” for con- 
venicncc of discussion. WC show that the union of 
VSs is also a VS, and that thcrc<ore a “largest” VS 
(LVS) exists for any machine with a viral set. WC 

then dcfinc a “smallest” VS (SVS), as a VS of which 
no subset is a VS, and show that for any finite intc- 
ger “i “, thcrc is an SVS with exactly i clcments. 

WC show that any self-replicating tape scquencc is 
a one clement SVS, that there arc countably infinite 
VSs and non VSs, that machines exist for which all 
tape scquenccs arc viruses and for which no tape 
scqucnccs arc viruses, and that any finite scquencc 
of tape symbols is a virus with respect to some 
machine. 

WC show that determining whether a given 
(machine, tape-set) pair is a VS is undccidablc (by 
reduction from the halting problem), that it is 
undccidablc whcthcr or not a given “virus” evolves 
into another virus, that any number that can bc 
“computed” by a TM can bc “cvolvcd” by a virus, 
and that thcrcforc, viruses arc at least as powerful 
as Turing machines as a means for computation. 

2. Informal Discussion 

We informally dcfinc a “computer virus” as a pro- 
gram that can “infect” other programs by modify- 
ing them to include a, possibly evolved, copy of 
itself. With the infection property, a virus can 
spread throughout a computer system or network 
using the authorizations of cvcry user using it to 
infect their programs. Every program that gets 
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infcctcd may also act as a virus and thus the in&c- 
tion spreads. 

The following pseudo-program shows how a virus 
might bc written in a pseudo-computer language. 
The “: = ” symbol is used for definition, the “:” 
symbol labels a statement, the “;” scparatcs statc- 
n1mts, the j’ = ” symbol is used for assignment or 
comparison, the “ - ” symbol stands for not, the “{ ” 
and “}” symbols group scquenccs of statcmcnts 
togcthcr, and the “. ..” symbol is used to indicate 
that an irrclcvant portion of code has been left 
unspccificd. 

program virus: = 
{ 1234M7; 

subroutine infect-cxecutablc: = 
{loop:filc = g - ct randonl-exccutablc-~~1~; 

if first-line-of-f& = 12345417 
then goto loop; 

prepcnd virus to file; 
I 

subroutine do-damage: = 
{ whatcvcr damage is to bc done} 

subroutine trigger-p&d: = 
jrcturn true if some condition holds} 

main = program: = 
{ infect-cxccutablc; 
if trigger-pulled then do-damage; 
goto newt;} 

next:} 

A Simple Virus “V” 

This cxamplc virus “v” scarchcs for an mlinfcctcd 
cxccutablc file “E” by looking for cxecutablc files 
without the “1234567” at the beginning, and prc- 
pends V to E, turning it into an infcctcd file “1”. V 
then cheeks to see if sonic triggering condition is 
true, and does damage. Finally, V exccutcs the rest 
of the program it was prcpcndcd to (prcpcnd is 
used to mean “attach at the beginning”). When the 
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user attempts to cxecutc E, I is cxccutcd in its place; 
it infects another file and then cxccutcs as if it wcrc 
E. With the cxccption of a slight delay for infcc- 
tion, I appears to bc E until the triggering condi- 
tion causes damage. 

A virus need not bc used for dcstructivc purposes 
or be a Trojan horse. As an cxamplc, a compression 
virus could bc written to find uninfcctcd cxccut- 
ables, compress them upon the user’s permission, 
and prcpend itself to them. Upon execution, the 
infcctcd program dccomprcsses itself and cxccutcs 
normally. Since it always asks permission before 
performing scrviccs, it is not a Trojan horse, but 
since it has the infection property, it is a virus. 
Studies indicate that such a virus could saw over 
j(M, of the space taken up by cxccutablc files in an 
avcragc system. The performance of infcctcd pro- 
grams dccrcascs slightly as they arc dccomprcsscd, 
and thus the compression virus implcmcnts a par- 
ticular timespace tradeoff. A sample compression 
virus could be written as follows: 

program compression-virus: = 
{01234507; 

subroutine infect-cxccutablc: = 
{loop:filc = g’t-random-exccutablc-filc; 
if first-lint-of-file = 0 12345h7 then 
then goto loop; 
compress file; 
prcpend compression-virus to file; 

I 

main-program: = 
{if ask-pcrmissiou then infcct- 

cxccutablc; 
uiiconiprcss the-rest-of-this-f& into 

tmpt~lc; 
run tiiipfilc;} 

A Compression Virus “C” 

This program “C” finds an uninfcctcd cxccutablc 
“E”, comprcsscs it, and prcpcnds C to form an 
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infected cxccutable “I”. It then uncompresses the 
rest of itself into a temporary file and executes nor- 
mally. When I is run, it will seek out and compress 
another executable before decompressing E into a 
temporary file and executing it. The effect is to 
spread through the system, compressing executable 
files and decompress them as they arc to bc 
executed. An implementation of this virus has been 
tcstcd under the UNIX operating system, and is 
quite slow, predominantly because of the time 
required for decompression. 

As a more threatening example. let us SUPPOSC that 
I 

we modi@ the progr& V by spccifyini “‘triggcr- 
Dulled” as true after a &en date and time. and 
I 

specifying “do-damage” Oas an infinite loop. With 
the level of sharing in most modern computer 
systems, the cntirc system would likely become 
unusable as of the spcciflcd date and time. A great 
deal of work might bc required to undo the 
damage of such a virus. This modification is shown 
hcrc 

. . . 
subroutine do-damage: = 

{loop: got0 loop;} 

subroutine trigger-pulled: = 
{if year > 1984 then true otherwise false;} 

. . . 
A Denial of Services Virus 

As an analogy to this virus, consider a biological 
disease that is 100% infectious, spreads whcncvcr 
people communicate, kills all infected persons 
instantly at a given moment, and has no dctcctablc 
side cffccts until that moment. If a delay of even 1 
week were used between the introduction of the 
disease and its effect, it would be very likely to 
leave only a few people in remote villages alive, and 
would certainly wipe out the vast majority of 
modern society. If a computer virus of this type 
could spread throughout the computers of the 
world, it would likely stop most computer usage 
for a significant period of time, and wreak havoc 
on modern government, financial, business, and 
academic institutions. 

3. Symbols Used in Computability Proofs 

Throughout the remainder of this paper, WC will 
be using logical symbols to de!& and prove 
theorems about “viruses” and “machines”. WC 
begin by detailing these symbols and their intended 
interpretation. 

WC denote sets by enclosing them in curly brackets 
“{” and “I” and the elements of sets by symbols 
separated by commas within the scope of these 
brackets (e.g. {a,b] stands for the set comprising clc- 
ments a and b). We normally USC lower case letters 
(e.g. a,b,...) to denote clcments of sets and upper 
case letters (e.g. A,B,. ..) to denote sets themselves. 
The exception to this rule is the case where sets arc 
elements of other sets, in which case they arc both 
sets and elements of sets, and WC USC’ the form most 
convenient for the situation. 

The set theory symbols E, C, U , and, or, Y’, iff, 
and 3 will be used in their normal manner, and the 
symbol IN will be used to denote the set of the 
natural numbers (i.e. {0, 1,. ..}) and II will bc used to 
represent the integers (i.e. { 1,. , . }). 

The notation {x s.t. P(x)} where P is a predicate will 
be used to indicate all x s.t. P(x) is true. 

Square brackets “[” and “1” will be used to group 
together statcmcnts where their grouping is not 
cntircly obvious, and will take the place of normal 
language parcns. 

The “(” and “)” parens will be used to denote 
ordcrcd n-tuples (sequences), and elements of the 
sequence will be separated by “,“s (e.g. (I,&.. .) is the 
sequence of integers starting with 1). 

The “. . ~” notation will be used to indicate an 
indefinite number of elements of a set, members of 
a sequence, or states of a machine wherein the 
indicated elements arc too numerous to fill in or 
can be gcncratcd by some given procedure. 

When speaking of sets, we may use the symbol “t” 
to indicate the union of two sets (eg. 
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{al+{bl = {a,bl), h t e symbol U to indicate the union 
of any number of sets, and the symbol u-” to indi- 
cate the set which contains all clcmcnts of the first 
set not in the second set (eg. { a,b}-{a} = {b}). WC 
may also use the “ = ” sign to indicate set equality. 
In all other cases, WC use thcsc operators in their 
normal arithmetic scnsc. The 1 . ..I operator will be 
used to indicate the cardinality of a set or the num- 
ber of elements in a sequence as ap ropriatc to the 
situation at hand (e.g. l{a,b,c}l =3, r(a,b ,..., f)l =6), 
and the symbol 1 h w en standing alone will indicate 
the “mod” function (eg. 12 I10 = 2). 

4. Computing Machines 

We begin our discussion with a definition of a 
computing machine [2] which will scrvc as our 
basic computational model for the duration of the 
discussion. The basic class of machines WC will be 
discussing is the set of machines which consist of a 
finite state machine (FSM) with a “tape head” and a 
semi-infinite tape (Fig. I). The tape head is point- 
ing at one tape “cell” at any given instant of time, 
and is capable of reading and writing any of a finite 
number of symbols from or to the tape, and of 
moving the tape one cell to the left (-l), right (+ l), 
or keeping it stationary (0) on any given “move”. 
The FSM takes input from the tape, sets its next 
state, products output on the tape and moves the 
tape as functions of its internal state and maps. 

tape 

+-+ 

+ _____ + I 1 cdl 0 

Finite tape +-+ 

State = = = = = > 1 I cell I 

Machine head f-f 

+ ~~~~~ + I I 

A set of computing machines “TM” is dcfincd as 
follows: 

VM[M E TM] iff 
M: (S,, I,, 0,5,X1, * I,, 

N,:S, XI, - S,, 

L~,:S,xI, + d) 

where the state of the FSM is one of IZ+ 1 possible 
states, 

S, = is,,,. . ., $1 I2 EN 

the set of tape symbols is one of j-t- 1 possible 
symbols, and 

I,={i I,)...) ‘,} jGN 

the set of tape motions is one of three possibilities 

d={-I,o, -i-l}. 

WC now define three functions of “time” which 
describe the behavior of TM programs. Time in 
our discussion cxprcsses the number of times the 
TM has performed its basic operation, called a 
“tnovc” by Turing. 

The “state(timc)” function is a map from the move 
number to the state of the machine after that move 

x,:!N-s, ;statc(time) 

the “tape-contcnts(timc, ccl1 # )” function is a map 
from the move number and the cell number on the 
tape, to the tape symbol in that ccl1 after that move 

q ,:[NxlIV ‘1, ;tapc-contcnts(tinie,ccll # ) 

and the “ccll(time)” function is a map from the 
move mmlbcr to the number of the ccl1 in front of 
the tape head after that move. 

P,:lN + [N ;cell(timc) 
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WC call the 3-tuplc (&, q M, P,& the “history” 
(H,) of the machine, and the H, for a particular 
move number (or instant in time) the “situation” at 
that time. WC describe the operation of the 
machine as a series of “moves” that go from a given 
situation to the next situation. The initial situation 
of the machine is described by 

(gM(O) =~Mo, ‘M(o, i) = q MO,i? PM(~) =Po) iEN 

All subsequent situations of the machine can be 
determined from the initial situation and the func- 
tions “N”, “O”, and “D” which map the current 
state of the machine and the symbol in front of the 
tape head before a move to the “next state”, 
“output”, and “tape position” after that move. We 
show the situation here as a function of time 

[8,(t+l)=N(SM(t), q M(ttPM(t)))] and 

These machines have no explicit “halt” state which 
guarantees that from the time such a state is 
entered, the situation of the machine will never 
change. WC thus define what we mean by “halt” as 
any situation which does not change with time. 

WC will say that “M Halts at time t” iff 

[Y’t’t 

[s,(t) = s,(t’)] and 

[vi E[N [~~(t, i) = q ~(t’, i)]] and 

K.&) = &l(t’)ll 

and that “M Halts” iff 

[3 t GIN [M Halts at time t]] 

We say that “x runs at time t” iff 

[[x E I,’ where i E II] and 

[S(t) = 8,,] and 

and that K$;;,“)!;; .) I3 (tt P(t)+ i)) = 41 9, . 
[3 t EiN [x runs at time t]] 

As a matter of convcnicncc, we define two struc- 
turns which will occur often throughout the rest of 
the discussion. The first structure “TP” is intended 
to describe a “Turing machine Program”. We may 
think of such a program as a finite scqucncc of 
symbols such that each symbol is a mcmbcr of the 
legal tape symbols for the machine under con- 
sideration. WC define TP as follows: 

[YM ETM[Yv[YiG II 

[v E TP,] iff[v E I,,,,‘]]]] 

The second structure “TS” is intended to describe a 
non-empty set of Turing machine programs 
(Turing machine program Set) and is d&cd as 

[YM E TM [YV[V E TS] iff 

i) [3v E V] and 

ii) [Vv E V[v E TPM]]]] 

The USC of the subscript M (cg. TP,) is unnecessary 
in those cases whcrc only a single machine is under 
consideration and no ambiguity is present. WC will 
therefore abbrcviatc throughout this paper by 
removing the subscript when it is unnecessary. 

5. Formal Definition of Viruses 

WC now define the central concept under study, 
the “viral set”. In earlier statements, WC have infor- 
mally dcfincd a “virus” as a “program” that modi- 
fies other “programs” so as to include a (possibly 
“evolved”) version of itself. The mathematical 
cmbodimcnt of this definition for Turing 
machines, given below, attempts to maintain the 
generality of this definition. 

Several previous attempts at definition failed 
because the idea of a singleton “virus” makes the 
understanding of “evolution” of viruses very diffi- 
cult, and as we hope to make clear, this is a central 
theme in the results presented herein. The viral set 
cmbodics evolution by allowing elements of such a 
set to produce other elements of that set as a result 
of computation. So long as each “virus” in a viral 
set produces some element of that viral set on some 
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part of the tape outside of the original virus, the set 
is considered “viral”. Thus “evolution” may be 

For convcnicncc of space, WC will use the expression 

dcscribcd as the production of one clement of a a&C 
viral set from another clement of that set. 

The sequences of tape symbols WC call “viruses” 
dcpcnd on the machine on which zhcy are to bc 
interpreted. We may expect that a given sequcncc 
of symbols may bc a virus when interpreted by one 
TM and not a virus when interpreted by another 
TM. Thus, WC dcfinc the pair “VS” as follows: 

to abbreviate part of the previous definition start- 
ing at lint [4] whcrc a, B, and C arc specific 

1] VMYV 
21 (M,V) E VSiff 

4 [V E TS] and [M E TM] and 

-cl 
jl K V’vHM 
61 t[ PM(t) =j and 

71 S,(t) = S,, and 

81 
91 I=+ 

(“~(t,j),...,n~(j,j-IVI~l))=V 

101 [ Iv’EV[31’> t[3j’ 

1’1 1 
‘21 

w-lv’l) Gjl 01 K.i-I~l)~j’ll ad 

‘31 

(OM(t’,j’),..., •l\,l(t’,j’+Iv’I~l))=~‘and 
[g?‘s.t.[t < t” < t’] and 

‘4 [PM(j”) 65 {j’,...,j’- Iv’I-l}]] 

151 111 1 1 

We will now rcvicw this definition lint by line 

for all “M” and “V”, 
the pair (M, V) is a “viral set” if and only if: 
V is a non-empty set of TM sequcnccs and M is a TM and 
for each virus “v” in V, for all histories of machine M, 

For all times t and cells j 
if the tape head is in front of ccllj at tirnc t and 

TM is in its initial state at time t and 
the tape cells starting at i hold the virus v 

then 

thcrc is a virus v’ in V, a time t’ > t, and place j’ such that 
at place j’ far enough away from v 
the tape cells starting atj’ hold virus v’ 
and at some time t” between time t and time t’ 

v’ is written by M 
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instances of v, M, and V respectively as follows: 

[VB [VC 

[(M,C) E VS] iff 

[[C E TS] and [M E TM] and 

[vaEC[a =k Cl]]]] 

We have defined the predicate VS over all Turing 
machines. We have also stated our definition, so 
that a given elcmcnt of a viral set may generate any 
number of other elements of that set depending on 
the rest of the tape. This affords additional gener- 
ality without undue complexity or restriction. 
Finally, we have no so-called “conditional viruses” 
in that EVERY element of a viral set must 
ALWAYS gcncratc another element of that set. If a 
conditional virus is desired, we could easily add 
conditionals that either cause or prevent a virus 
from being cxccutcd as a function of the rest of the 
tape, without modifying this definition. 

We may also say that V is a “viral set” with respect 
to M 

iff [(M, V) E VS] 

and dcfkc the term “virus” with rcspcct to M as 

{[v E V] s.t. [(MJ) E VS]} 

WC say that “v ~VO~VCS into v’ for M” iff 

[(MJ) E VS 
[[vEV] and [v’EV] and [v Z- {v’}]] 

that “v’ is cvolvcd from v for M” iff 

“v evolves into v’ for M” 

and that “v’ is an evolution of v for M” iff [vvq3vcu[v % VI]] 

[(MV) E VS 

[3iE oV[3V’EV’ 
[v E V] and [v’ E V] and 

[t’vk E V’[vk =% v,, ,I] and 
[31EOV 

[3mc N 
[[l < m] and [v, = v] 

and ]v,,, = ~‘1111111 

In other words, the transitive closure of =Z- start- 
ing from v, contains v’. 

6. Basic Theorems 

Our most basic theorem states that any union of 
viral sets is also a viral set 

Theorem 1: 

vMVU* 
[VV E U*s.t.(M,V) E VS] ==+- 

[(M, U U’) E VS] 

Proof: 
Define U = U U* 
by definition of U 

I) [Vvq3VEU*s.t.vq] 
2) [HI E u*[vv E V[v E U]]] 

Also by definition, 

[(M,U) E VS] iff 

[[U E TS] and [M E TM] and 

[VVE U[v JL- U]]] 

by assumption, 

[VV E u* 

[tivEV[v &- VI]] 

thus since 

and 
[Vv E U[3V E u*[v z- V]]] 
[v/v E U*[V c U]] 
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hcncc [Vv E U[v 2=- U]] 

thus by definition, (M,U) E VS 
QE.D. 

Knowing this, WC‘ prove that there is a “largest” 
viral set with respect to any machine, that set being 
the union of all viral sets with respect to that 
inachinc. 

Lcninia 1.1: 

[YM E TM 

[ [Ns.t. [(M,V) E VS]] ==+ 

F-J 

i) [(M,U) E VS] and 

ii) [YV[[(M,V) E VS] =+ 

l~vGV[vE u1111111 

WC call U the “largest viral set” (LVS) w.r.t. M, aud 
d&C 

(M,U) E LVS ifqi and ii] 

Proof: 
assume [3V[(M,V) E VS]] 

choose U = U (V s.t. [(M,V) E VS]} 

now prove i and ii 

Proof of i: (by Thcorcm 1) 

(A%[ U {V s.t. [(MJ) E VS]}) E VS 

thus (M,U) E VS 

Proof of ii by contradiction: 
assuuic ii) is false: 
thus [IV s.t. 

1) [(M,V) E VS] and 
2) [Iv G v s.t. [v 6 U]]] 

but [“V s.t. (M,V) E VS 
[Yv E V[v E U]]] (definition of union) 

thus [v 4 U] and [v E U] (contradiction) 
thus ii) is true 
QE.D. 

Having d&cd the largest viral set with rcspcct to 
a rnachinc, WC now defmc a “smallest viral set” as a 
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viral set of which no proper subset is a viral set 
with rcspcct to the given rnachinc. There may be 
many such sets for a given rnachinc. 

WC d&c SVS as follows: 

[VM [YV 

[(M,V) E SVS] iff 
1) [(M,V) E VS] and 
2) [(au s.t. 

[U C V] (proper subset) and 

I(MJJ) E v~llll 

WC now prove that thcrc is a rnachinc for which 
the SVS is a simlcton set and that the minimal viral 
set is thcrcforc ~inglcton. 

Theorem 2: 

[3M[3V 
i) [(M,V) E SVS] and 

ii) llVl = ‘III 

Proof: by demonstration 
M:S={s,,,s,}, 1=(&l}, 

SXI N 

s,,,(J $1 

so, 1 Sl 
s,,() %I 
s,,l SI 

0 D 

0 0 
1 +1 

1 0 

1 +1 

I{( l)}( = 1 (by definition of the operator) 

[(M,{( 1))) E SVS] iff 
1) [(M,{( 1))) E VS] and 

2) [(MA I) @ VS] 

(M,{ }) @ VS (by definition since {}4 TS) 

as can bc vcrificd by the reader: 

(1) %= {(‘)I (t’= r-2, f’=t+l,j’=j+ 1) 

thus (M,{(l)]) E VS 
QE.D. 
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With the knowledge that the above sequence is a 
singleton viral set and that it duplicates itself, WC 
suspect that any sequence which duplicates itself is 
a virus with respect to the machine on which it is 
self-duplicating. 

Lemma 2.1: 

[VMETM[VUETP 

[[u 2 141 - KM4-4 ~VSIIII 

Proof: 
by substitution into the definition of viruses: 

[VM E TM[‘d{u) 
[[(Mhd) E VS] iff 

[[{u}ETS] and [u =% {~I]]11 

since [[u E TP] =+ [{u} E TS]] (definition of TS) 
and by assumption, 

[u Z- 141 

[(MA4 EVS] 

QED. 

SXI N 0 

The cxistencc of a singleton SVS spurs intcrcst in 
whcthcr or not there arc other sizes of SVSs. WC 
show that for any finite integer i, thcrc is a 
machine such that there is an SVS with i elements. 
Thus, SVSs come in all sizes. We prove this fact by 
demonstrating a machine that generates the 
“(xmod i)+l”th element of a viral set from the xth 
clement of that set. In order to guarantee that it is 
an SVS, we force the machine to halt as soon as the 
next “evolution” is gencratcd, so that no other clc- 
mcnt of the viral set is generated. Removing any 
subset of the viral set guarantees that some clcmcnt 
of the resulting set cannot be generated by another 
clcmcnt of the set. If WC remove all the elements 
from the set, we have an empty set, which by 
definition is not a viral set. 

Theorem 3: 
[VE II 

[3M E TM[~v 

I) [(M,V) E SVS] and 

4 [IV1 = ill11 

Proof By demonstration 

M: S={s(,,s ,,..., , , s} I={O,l,..., i), 
Y x E{l,...,ii 

D 

LO 
S,,,x 
. . . 
s * I 9 

so 
s, 

s, 

0 
x 

[xl i]+l 

0 
+1 

0 

;if I = 0, halt 
;if I =x, goto state x, move right 
;othcr states generalized as: 
; write [x] i] - 1, halt 

proof of i) proof of “1) (M,V) E VS” 
define V = {(l),(2),. . .,(i)i 
IV] = i (by definition of operator) (1) 2=- I(41 (t’=t+2,t”=t+ I, 

j’=j+ 1) 
. . . 

proof ot‘ii) 
[(M,V) E SVS] iff 

1) [(M,V) E VS] and 
2) [au[[UcV] and [(M,U)EVS]]] 

([i-l]) =f~ {(i)} (t’ = t + 2, t” = t + 1, 
j’=j+ 1) 

(i) %- {(1)} (f’ = tt2, t” = t+ 1, 
j’=j+ I) 

and (l)EV,..., and (i)EV 
(as can be verified by simulation) 
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thus, [YvEV(V %- V]] 
so (M,V) E VS 
proof of “2) [dU[[U C V] and [(M,U) E VS]]]” 
given [3t,jG IN [3v E V 

[[m(t,j)=v] and 

[S(t) = S,,] and 

[P(t) =A1 

* [[M halts at time t + 21 and 
[vi i] + 1 is written at j + 1 at t + l]]] 

(as can bc verified by simulation) 

and [YXE {l,..., i}[(~) E V]] (by definition of V) 

awncdcon~;d~ L., iI [X %- i[~) i] + 1 i]] 

[xl i] + 1 is the ONLY symbol written 
outside of (x) 

thus [2X’ # [XI i] + 1 [A? J% {X’}]] 
now (Y(X) E V 

KI+l + WV - K4~vl11 

assume [3U c V[(M,U) E VS]] 

[U={1] - [(M&J) 4 VS] thus U # { ] 
by definition of proper subset 

[UCV] - [3vEV[v4U]] 

but [3v~V[v4U]] 
- [1v’EU[[v’I i]+l =v] 

and [v G U] 

and [~v”E V[v’ =%- v”]]] . 

thus [~VG u[v’ - v]] 

and [v’ E U] 

thus [(M,U) 4 VS] which is a contradiction 

QE.D. 

7. Abbreviated Table Theorems 

allow a large set of states, inputs, outputs, next 
states, and tape movements to bc abbreviated in a 
single statement. Thcsc “macros” arc simply abbrc- 
viations and thus WC display the means by which 
our abbreviations can be expanded into state tables. 
This technique is csscntially the same as that used 
in ref. [2], and WC rcfcr the reader to this manu- 
script for further details on the USC of abbrcviatcd 
tables. 

In order to make cffcctivc USC of macros, WC will 
USC a convcnicnt notation for describing large state 
tables with a small number of symbols. When WC 
dctine states in thcsc state tables, WC will often rcfcr 
to a state as S,, or S,,_, to indicate that the actual 
state number is not of import, but rather that the 
given macro can bc used at any point in a larger 
table by simply substituting the actual state 
numbers for the variable state numbers used in the 
definition of the macro. For inputs and outputs, 
where WC do not wish to cnumcratc all possible 
input and output combinations, WC will USC 

variables as well. In many cases, WC may dcscribc 
entire ranges of values with a single variable. WC 
will attempt to make thcsc substitutions clear as WC 
dcscribc the following set of macros. 

The “halt” macro allows us to halt the machine in 
any given state S,,. We USC the “*” to indicate that 
for any input the machine will do the rest of the 
specified function. The next state entry (N) is S,, so 
that the next state will always be S,,. The output (0) 
is * which is intcndcd to indicate that this state will 
output to the tape whatever was input from the 
tape. The tape movement (D) is o to indicate the 
tape cell in front of the tape head will not change. 
The rcadcr may verify that this meets the condi- 
tions of a “halt” state as d&cd earlier. 

name S,I N 0 D 

WC now move into a series of proofs that 
demonstrate the existence of various types of 
viruses. In order to simplify the presentation, WC 
have adopted the technique of writing “abbreviated 
tables” in place of complctc state tables. The basic 
principal of the abbreviated table (or macro) is to 

halt s * ,I? 

(halt the machine) 

S,, 
* 0 

The “right till x” macro describes a machine which 
increments the tape position (P(t)) until such posi- 
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tion is reached that the symbol x is in front of the 
tape head. At this point, it will cause the next state 
to be the state after S,, so that it may be foliowcd by 
other state table entries. Notice the USC of “clsc” to 
indicate that for all inputs other than X, the 
machine will output whatever was input (thus 
leaving the tape unchanged) and move to the right 
one square. 

name 

R(x) 

S,I N 0 D 

S,,,X s I, + I .I 0 
S,,clse s,, else +1 

(R(X): right till X) 

The “left till 2’ macro is just like the R(x) macro 
except that the tape is moved left (-1) rather than 
right (+ 1). 

name 

L(x) 

V N 0 D 

S,!,X s,,-1 .X 0 
s ,,,clsc S, else -1 

(L(x): left till X) 

The “change s to y until 2’ macro moves from left 
to right over the tape until the symbol z is in front 
of the tape head, replacing cvcry occurrcncc of x 

with y, and leaving all other tape symbols as they 
wcrc. 

name %I N 0 D 

C(%,y,4 S”,?Z SF, z 0 

s,,,x s,, Y +1 

S,,else s,, clsc +1 

(C(X,,Y,Z): change x to y till Z) 

The “copy from s till y after 2’ macro is a bit more 
complex than the previous macros bccausc its size 
depends on the number of input symbols for the 
machine under consideration. The basic principal is 
to dcfinc a set of states for each symbol of interest 
so that the set of states rcplaccs the symbol of intcr- 
cst with the “left of tape marker”, moves right until 
the “current right of tape marker”, rcplaccs that 
marker with the desired symbol, moves right one 
more, places the marker at the “new right of tape”, 
and then moves left until the “left of tape marker”, 
rcplaccs it with the original symbol, moves right 
one tape square, and continues from there. The 
loop just described requires sonic initialization to 
arrange for the “right of tape marker” and a test to 
detect the y on the tape and thus dctcrminc when 
to complete its operation. At completion, the 
macro goes onto the state following the last state 
taken up by the macro and it can thus be used as 
the above macros. 
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nan1c $1 N 0 11 

CPY(s,y,z) (copy from s till y to after Z) 

S 
,I ‘J ‘W) 

s,,r IO S ,, I I Y 
s, i’ lt(“M”) 

s, i’., sky2 * 

Sk,.i..2 Sk i* , “M” 

s,.y , L(“N”) 

s, 5’ -( S,,., 
* 

For each of the above macros (cxccpt “halt”), the 
“arguments” must be specified ahcad of time, and if 
the tape is not in such a configuration that all of 
the required symbols arc prcscnt in their proper 
order, the macros may cause the machine to loop 
indcfinitcly in the macro rather than leaving upon 
completion. 

WC now show that thcrc is a viral set which is the 
size of the natural numbers (countably infinite), by 
demonstrating a viral set of which each clement 
gcncratcs an clement with one additional symbol. 

0 

$1 

0 

0 

+ 1 

-1 

0 

+I 
0 

+I 

; right till s 
; write “N” 
; right till y 
; right till z 
; right one more 
; write “M” 
; left till “N” 
; replace the initial s 
; if y, done 
; else write “N” an 
;gotoS,, 5 times the input 
; symbol number 
; right till “M” 
; copy completed 
; goto the “M” 
; write the copied symbol 
; write the trailing “M” 
; left till “N” 
; rcwritc * and go on 

Since, given any clcmcnt of the set, a new clcmcnt 
is gmcratcd with cvcry cxccution and no prc- 
viously gcncratcd clcmcnt is cvcr rcgcncratcd, WC 
have a set gcncratcd in the same inductive manner 
as the natural numbers, and Acre is thus a onc-to- 
one mapping to the intcgcrs from the gcncratcd set. 

Thcorcm 4: 

[IMETMjVETS s.t. 
1) [(M,V) E VS] and 

4 [IVI = PI1 
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Proof by demonstration: 

SJ N 0 D 

M: S,,,L 
S,,,clsc 

S,,O 
S2,K 

S, 
S, 
Si 

SC, 
S,,L 
S,,S 

S, 
S,,.v 
S IO 
S II 
S 12 
S I? 

S, 

$O,\,R) 

S, 
S, 

:!R) 
L(x or L) 
S c II 

2(x) 
s IO 

f<(x) 

S,, 
S Ii 

V = { (LOR), (LOOR),. . ., (LO.. .OR),. . . } 

proof of 1) (M,V) E VS 
dcfmition: 
[VM E TM[YV 

[(M,V) E VS] iff 
[[V E TS] and [Y vEV[v s w111 

; start 

; change OS to x’s till R 
; write R 
; write L 
; write s 

move left R 

0 

+1 
0 

0 

; left till or L 
; L got0 sl 1 

; if x replace with 0 
; move right till s 
; change to 0, move right 
; write x and goto S5 
; move right till x 
; add one 0 
; halt with K on tape 

not viral scqucnces, thus proving that no finite state 
machine can be given to dctcrminc whether or not 
a given (M,V) p air is “viral” by simply enumerating 
all viruses (from Thcorcm ‘c) or by simply 
cnumcrating all non viruses (by Lemma 4.1). 

Lemma 4.1: 
[3METM 3WETS 

1) [ WI = IoVl] and I 
2) [VWE W$W’C w 

[w - w’lllll 

Proof: 

using M from Thcorcm 1, WC choose 
W={(x),(xx) )...) (x.x) )... } 

clearly [M ETM] and [WETS] and [I WI = loll] 
since (from the state table) 

[YtuG W [w runs at time t] - 
[w halts at time t]] 

[Ji > t[P&‘) + c&)11 
thus [kUG W[dW’C W[w - W’]]] 
QE.D. 
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It turns out that the above case is an example of a 
viral set that has no SVS. This is because no matter 
how many elements of V are removed from the 
front of V, the set can always have another element 
removed without making ii non-viral. 

We also wish to show that there are machines for 
which no sequcnccs arc viruses, and do this trivially 
below by defining a machine which always halts 
without moving the tape head. 

Lemma 4.2: 

[3M E TM [aV E TS [(M,V) E VS]]] 

Proof by demonstration: 

SJ N 0 1> 

M: sO,all SO 0 0 

.%I N 0 

$tr;lly verified that [Yt [PM(f) = PO]]) 
. . 

WC show that for ANY finite scqucnce of tape 
symbols “v”, it is possible to construct a machine 
for which that sequence is a virus. As a side issue, 
this particular machine is such that LVS = SVS, and 
thus no scqucncc other than “v” is a virus with 
respect to this machine. WC form this machine by 
generating a finite “recognizer” that cxamincs 
successive cells of the tape and halts unless each cell 
in order is the appropriate clement of v. If each cell 
is appropriate WC replicate v and subsequently halt. 

Thcorcm 5: 

Proof by demonstration: 

v= iv,,,v ?,...,v~} whcrc [kG[N] and [VE I’] 
(definition of TP) 

11 

M: sl~~vo 
s,,,clsc 
. . . 

Sh,Vk 

Sk,& 

SL.1 

. . . 

Sk+k 

sl 
so 

sk- I 

%I 

sk-2 

sk t k 

v0 
0 

Vk 

0 

VlI 

vk 

it is trivially vcrificd that [v s {v}] 
and hence (by Lemma 2.1) [(M,{ v}) E VS] 
QED. 

With this knowledge, we can easily gcneratc a 
machine which recognizes any of a finite number of 
finite scqucnccs and gcncrates either a copy of that 
scqucnce (if we wish each to be an SVS), another 
element of that set (if WC wish to have a complex 
dependency between subsequent viruses), a given 
sequence in that set (if WC wish to have only one 

+1 
0 

+1 
0 

t1 

-0 

(recognize 1st elcmcnt of v) 
(or halt) 
(etc till) 
(recognize kth clement of v) 
(or halt) 
(output 1 st element of v) 
(ctc till) 
(output kth clement of v) 

SVS), or each of the elements of that set in 
scquencc (if we wish to have LVS = SVS). 

We will again define a set of macros to simplify 
our task. This time, our macros will be the “rccog- 
nize” macro, the “gcneratc” macro, the “if-thcn- 
clsc” macro, and the “pair” macro. 



Computers and Security, Vol. 8, No. 4 

The “recognize” macro recognizes a finite sequence 
and leaves the machine in one of two states 
depending on the result of recognition. It leaves the 
tape at its initial point if the sequence is not recog- 
nized so that successive recognize macros may be 

used to recognize any of a set of scqucnccs starting 
at a given place on the tape without additional dif- 
fkultics. It leaves the tape at the cell one past the 
end of the sequence if recognition succeeds, so that 
another scqucncc can be added outside of the 
recognized sequence without additional difficulty. 

SJ N 0 D 

recognize(v) for v of size z 

Sn,vO SF, 
s * S,_,+,P, “I 9 
. . . 
S n+k,Vk h-k-1 

Lk,* s, -z-r-k 

. . . 
S,+, ,v, S,+,-, 
S,-,& ,* S n-2 
s * S n+.Zt nTZ-1 
. . . 

SP.,,ZP I 
SIl-Z-Z 

vo $1 
* 0 

(etc till) 

vk +1 
* 

-1 

(etc till) 

v, +1 

v.? $1 
* -1 

(“didn’t recognize” state) 
(“did recognize” state) 

(rccognizc 0th clement) 
(or rewind 0) 

(rccognizc kth elcmcnt) 
(or rewind tape) 

(rccognizc the last one) 
(or rewind tape) 
(rewind tape one square) 
(for each of k states) 

Th e ugeneraten macro simply generates a given 
sequence starting at the current tape location: 

SJ N 0 D 

generate(v) where v is of length k 
s, S II+1 VO 
. . . 
S ntk S w+k+l vk 

+1 

+o 

The “if-then-else” macro consists of a “rccognizc” 
macro on a given sequence and goes to a next state 
corresponding to the initial state of the “then” 
result if the recognize macro succeeds and to the 
next state corresponding to the initial state of the 
“else” result if the recognize macro fails 

S,I N 0 D 

if(v) (then-state) else (else-state) 

S, recognize(v) 
S 
S 

m+al”l;I.* else-state * 0 
then-state * 

n+2lv/9 0 

The “pair” macro simply appends one sequcncc of 
states to another and thus combines two sequences 
into a single sequence. The resulting state table is 
just the concatenation of the state tables 

SJ N 0 D 

pair(a, b) 

S,, 
S,, : 

We may now write the previous machine “M” as 

if(v) (pair(gcncratc(v), halt)) else (halt) 

WC can also form a machine which recognizes any 
of a finite number of sequences and generates 
copies, 

if (v~,) (pair(gcnerate(v,,),halt)) else 
if (v,) (pair(generatc(v,), halt)) else 

if (vk) (pair(gcnerate(v,),halt)) else (halt) 
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a nlachinc which gcncratcs the “next” virus in a 
finite “ring” of viruses front the “previous” virus 

if (v(,) (pair(gcncrate(v,),halt)) else 
if (v,) (pair(generatc(v,),halt)) clsc 

. . . 
if (vk) (pair(gcnerate(v,,),halt)) else (halt) 

and a nlachinc which gcncratcs any dcsircd 

dcpcndency. 

if (v,)) (pair(gencratc(v,,),halt)) else 
if (v,) (pair(gencratc(vY),halt)) else 

. . . 

if (vk) (pair(gcneratc(v,),halt)) clsc (halt) 
where v,,, v Y’ ...’ v,E iv,,..., Vk} 

WC now show a niachine for which cvcry scqucncc 
is a virus, as is shown in the following sinlplc 
1% cinnla. 

Lciiima 5.1 : 

(~METM 

[‘A E TP[3V 

[[v E V] and [(M,V) E LVS]]]]] 

Proof by dcnlonstration: 

I={_x}, S=(S,,} 

S,I N 0 

M: S,,J SC, s 

trivially sc’cn from state table: 

[~tin~t[‘JS[~P(notMhalts]]]] 

and [THE OV[~VEI” 

[[v 2 ((X)1] and 

[(M,J(X),vi) E LVS]]]] 

1 1CIlCC [vv E TP[(Mb,(X)J) E VS]] 

D 

+1 

and by Theorcnl I, [IV[[v E V] and [(M,V) E LVS]]] 

Q.E.D. 

8. Computability Aspects of Viruses and 
Viral Detection 

We can clearly gcncratc a wide variety of viral sets 
and the USC of macros is quite helpful in pointing 
this out. Rather than follow this line through the 
cnunlcration of any nunlber of other cxanlplcs of 
viral sets, WC would like to dcterminc the power of 
viruses in a niorc gcncral nianncr. In particular, WC 
will cxplorc three issues. 

The “dccidability” issue addrcsscs the question of 
whether or not WC can write a TM prograni 
capable of dctcrmining, in finite tinlc, whcthcr or 
not a given sequcncc for a given TM is a virus. The 
“evolution” issue addrcsscs the question of whcthcr 
WC can write a TM program capable of dctcrmin- 
i ng, in a finite time, whether or not a given 
scqucncc for a given TM “gcncrates” another given 
scqucncc for that machine. The “computability” 
issue addrcsscs the question of dctcrnlining the 
class of scquenccs that can bc “cvolvcd” by viruses. 

WC now show that it is undccidablc whcthcr or 
not a given (M,V) p air is a viral set. This is done by 
reduction front the halting problcnl in the following 
nlanncr. WC take an arbitrary nlachine M’ and tape 
sequence V’, and gcncratc a machine M and tape 
scqucncc V such that M topics V’ front inside of V, 
sinlulates the cxccution of M’ on V’, and if V’ halts 
on M’ replicates V. Thus, V replicates itself if and 
only if V’ would halt on nlachinc M’. WC know 
that the “halting problem” is undecidable 121, that 
any prograni that rcplicatcs itself is a virus [Leninia 
2.11, and thus that [(M,V) E VS] is undccidablc. 

Thcorcni 0: 

[jl>~TM[3s, ES,, 

[VM = TM [VV E TS 

I) [I’ halts] and 

2) [S,,(t)= s,] iff [(M,V) E VS]]]]] 
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“Proof by reduction from the Halting Problem: 

[vMETM[1M’ETM 
[,,L” 4 I,,] and [,R”G IM,] and 
[,,l” G I,,] and rr” 4 I,,] and 

11 
=+- [[NM8 = S,] and [O,, = IM] and [I&,, = o]]] 

WC must take some care in defining the machine 
M’ to cnsurc that it CANNOT write a viral 
scqucnce, and that it CANNOT overwrite the cri- 
tical portion of V which will cause V to rcplicatc if 
M’ halts. Thus, WC restrict the “simulated” (M’,V’) 
pair by requiring that the symbols L,R,l,r not bc 
used by them. This restriction is without loss of 

M: 

S,I N 0 

generality, since WC can systematically replace any 
occurrences of these symbols in M’ without chang- 
ing the computation pcrformcd or its halting 
characteristics. We have again taken special care to 
cnsurc that (M’,V’) cannot intcrfcrc with the 
scqucnce V by restricting M’ so that in ANY state, if 
the symbol “1” is encountered, the state remains 
unchanged, and the tape moves right by one 
square. This cffcctivcly simulates the “semi-infi- 
nite” end of the tape, and forces M’ to remain in an 
area outside of V. Finally, WC have rcstrictcd M’ 
so that for all states such that “M halts”, M’ goes 
to state S,,. 

now by [2] 
[BDETM 

[~M’ETM[~V’ETS 
1) [D halts] and 
2) [S,,(t) = s,] iff [(M’,V’) halts]]]] 

WC now construct (M,V) s.t. 
[(M,V) E VS] iff [(M’,V’) Halts] 

as follows: 

1) 

S,,,L 
s,,,clsc 

S, 
SA 

S, 
S, 
Si 

S, 
S.,. I 

S, L 

S,, s 
CPY(“,“,“r”,“R”) 

L(,,L”) 
R(“R”) 
Sj 1 

rj;‘:L.) 

CPY(“L”,“R”,“K”) 

V = {(Ll,V’,r,R)i 

Since the machine M requires the symbol “L” to be 
under the tape head in state S,, in order for any 
program to not halt immcdiatcly upon execution, 
and since WC have restricted the simulation of M’ 
to not allow the symbol “L” to be written or con- 
tained in V’, M’ CANNOT gencratc a virus. 

VtE rqvs, < s, 

[JP,(t)[[I Z “L”] and [0 = “L”]]]]] 

0 

0 

-1 

; if “L” then continue 
; clsc halt 
; Copy from 1 till r after R 
; left till “L” 
; right till “K” 
; move to start of (M ‘,V’) 
; the program M’ goes hcrc 
; niovc left till “L” 
; Copy from L till R after 11 

This restricts the ability to gcncratc mcmbcrs of VS 
such that V only products symbols outside itself 
containing the symbol “I.,” in state S,, and S, ~, , and 
thus thcsc arc the ONLY states in which rcplica- 
tion can take place. Since S,, can only write “L” if it 
is already prcscnt, it cannot bc used to write a virus 
that was not previously prcscnt. 

[~EbI[VS(S, G s G S,) 
[not[M’ halts at time r]] 

and [PM(f+ 1) not within V]]] 
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If the execution of M’ on V’ ncvcr halts, then S,, _ , 
is never reached, and thus (M,V) cannot bc a virus. 

(Viz E TPs.t.Z,, # “L”] 
[M run on Z at time t] 

=-+ [M halts at time tt I] 
[(M’,V’) Halts] iff 

[atmkt.S,=S,,+,] 
thus [not(M’,V’) Halts] - [(M,V) 4 VS)] 

Since S, _, replicates v after the final “K” in v, M’ 
halts irnplics that V is a viral set with rcspcct to M 

[3t ElNs.t.S,=s,,_ ,] ==+ 

and fro!I?c~l~~~!vI s ivi11 
[‘6+ Vv %= V] ==+ [(M,V) E VS] 

thus [(M,V) E VS] iff [(M’,V’) Halts] 
and by [2] 
[14DETM 

[~M’ETM[~v’ETs 
I) [D halts] and 
2) [S,,(t) = s,] iff [(M’,V’) halts]]]] 

M: S,,,L S,,, L 
S,,,clsc 

SC,, 
~pY(“~,“II’.,“~.)z 

s 0” L( “L”) 

S, CPY (((l”,“r”,“lv) 

S1 L( “L”) 

S, R(“r”) 

S, Si r 
Si 

S, 
$IL’,) 

S 

S:l 

1q “K) 

S,_, “R” 

S,-3 gcncrate(v’) 

assunlc [v’ is a virus w.r.t. M] 
since [S,,, is reached] iff [(M’,V’) halts] 
thus [v’ is gcncratcd] iff [(M’,V’) halts] 
Q.E.D. 

thus 
[ADETM 

[VMETM~VETS 

1) [I> halts] and 

2) [S,,(t) = s,] iff [(M,V) E VS]]]] 
QE.D. 

WC now answer the question of viral “evolution” 
quite easily by changing the above cxamplc so that 
it replicates (state 0’) before running V’ on M’, and 
generates v’ iff (M’,V’) halts. The initial self-repli- 
cation forces [(M,V) E VS], while the generation of 
v’ iff (M’,V’) halts, niakcs the question of whether 
v’ can bc “cvolvcd” front v undccidablc. v’ can bc 
any dcsircd virus, for exaniple v with a slightly 
diffcrcnt sequence V” instead of V’. 

Lcninia 6.1: 
[KJETM 

[v(M,V) E VS 
[VVE V[t/v’ 

1) [D halts] and 

2) [S(t)=%] iff[v z 1v’I]]]]] 
sketch of proof by demonstration: 
nlodify machine M above s.t.: 

; if “L” then continue 
; else halt 
; replicate initial virus 
; return to replicated “L” 
; Copy froni 1 till r after K 
; left till “L” 

_. 1 

-tl 

; right till “11” 
; nlovc to start of (M’,V’) 
; the program M’ goes here 
; move left till “L” 
; move right till “K” 
; get into available space 
; and gcneratc v’ 
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WC are now ready to dctcrminc just how powerful 
viral evolution is as a means of computation. Since 
WC‘ have shown that an arbitrary machine can bc 
ctnbeddcd within a virus (Thcorcrn o), we will now 
choose a particular class of rnachincs to cmbcd to 
get a class of viruses with the property that the 
successive tncrnbcrs of the viral set gencratcd from 
arty particular tncmbcr of the set, contain subsc- 
qucnccs which arc (in Turing’s notation) succcssivc 
iterations of the “Universal Contpuring Machine” 
[2]. The succcssivc tncmbcrs arc called “evolutions 
of the previous nlcnibcrs, and thus any nutnbcr 
that can bc “computed” by a TM, can bc “cvolvcd” 
by a virus. WC thcrcfore conclude that “viruses” arc 
31 least as powerful a class of computing niachincs 
as TMs, and that thcrc is a “Universal Viral 
Machine” which can cvolvc any “computable” 
number. 

SXI N 0 1) 

Thcorctn 7: 

[~M’E TM [~(M,v) E vs 
[V’iGov 

111111 
[[v “e~olvcs” into v’] and [XC v’]] 

Proof by dctttonstrarion: 
by [z]: 

[Sov 
[KvE {O, I }’ [A-E HM,]]]]]] 

Using the original description of the “Universal 
Compuring Machine” [z], WC modify the UTM so 
that each succcssivc iteration of the UTM intcrprc- 
tation of a “I).N” is done with a new copy of the 
“D.N” which is crcatcd by replicating the tnodificd 
version resulting front rhc previous iteration into 
an arca of the tape beyond that used by the prc- 
vious iteration. WC will not write down the cntirc 
description of the UTM, but rather just tltc 
rclcvant portions. 

b: 
b,: 
anf: 
. 

ov: 

f(b,,b,,“::“) 
R,R,P:,R,R,PD,R,R,PAanf 

anf 

; initial states of UTM print out 
; DA on the f-squares after :: 
; this is whcrc UTM loops 
; the intcrprctation states follow 
; and the machine loops back to anf 

WC niodify the machine as in the case of Thcorctn 
6 cxccpt that 

WC rcplacc: 
ov: anf ; got0 “a& 

with: ov: g(ov’,“r”) ; write an “r” 
ov’: L(“L”) ; go left till “L” 
ov”: CPY(,,L”,“R”,“R”) ; rcplicatc virus 
ov”‘: L(“L”) ; left till start of 

the evolution 
0~““: R(“r”) ; right till 

tnarkcd “r” 
0~““‘: anf ; got0 “anf 

and [Q.,,[I,!,, =“lY] ==+ 
(ntovc right 1, write “K”, tnovc left I, 
continue as bcforc) 

The niodification of the “anf” state breaks the nor- 
mal interpretation loop of the UTM, and rcplaccs 
it with a replication into which WC‘ then position 
the tape head so that upon return to “an? the 
machine will opcratc as before over a different por- 
tion of the tape. The second modification ensures 
that from any state that rcachcs the right end of the 
virus “R”, the 11 will bc tnovcd right one tape 
squat-c, the tape will bc rcpositioncd as it was 
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and M as: 

SXI N 0 11 

S,,,L S, L +l ; start with “L” 
S,,,clsc s,, else 0 ; or halt 
s,... ; stam from modi&d UTM 
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