
Computers & Security, 8 (1989) 325-344

Refereed Article

Computational
Aspects of
Computer Viruses

This paper formally defines a class of sets of transitive inte-

griry-corrupting n~cchanisms called “viral sets” and cxplorcs

some ofethcir con~putational properrics.

1. introduction

A
“virus” may bc loosely d&cd as a sequcncc of
ymbols which, upon interpretation, causes

other scqucnccs of symbols to contain (possibly
cvolvcd) virus(cs). If WC consider an intcrpretcd
scquencc of symbols in an information system as a
“program”, viruses arc intcrcsting to computer
systems bccausc of their ability to attach thcmsclvcs
to programs and cause them to contain viruses as
WCll.

WC begin the discussion with an informal discus-
sion of “virus? [l] b ascd on an English language
definition. WC give “pseudo-program” cxamplcs of
viruses as they might appear in modern computer
systems and use these cxamplcs to dcmonstratc
some of the potential damage that could result if
they attack a system. We then formally d&c a
trivial generalization of “Turing machines”,
define “viral sctsn in terms of thcsc machines, and
cxplorc sonic of their properties. WC d&c a com-
puting machine and a set of (machine, tape-set)
pairs which comprise “viral sets” (VS). WC then
define the terms “virus” and “evolution” for con-
venicncc of discussion. WC show that the union of
VSs is also a VS, and that thcrc<ore a “largest” VS
(LVS) exists for any machine with a viral set. WC

then dcfinc a “smallest” VS (SVS), as a VS of which
no subset is a VS, and show that for any finite intc-
ger “i “, thcrc is an SVS with exactly i clcments.

WC show that any self-replicating tape scquencc is
a one clement SVS, that there arc countably infinite
VSs and non VSs, that machines exist for which all
tape scquenccs arc viruses and for which no tape
scqucnccs arc viruses, and that any finite scquencc
of tape symbols is a virus with respect to some
machine.

WC show that determining whether a given
(machine, tape-set) pair is a VS is undccidablc (by
reduction from the halting problem), that it is
undccidablc whcthcr or not a given “virus” evolves
into another virus, that any number that can bc
“computed” by a TM can bc “cvolvcd” by a virus,
and that thcrcforc, viruses arc at least as powerful
as Turing machines as a means for computation.

2. Informal Discussion

We informally dcfinc a “computer virus” as a pro-
gram that can “infect” other programs by modify-
ing them to include a, possibly evolved, copy of
itself. With the infection property, a virus can
spread throughout a computer system or network
using the authorizations of cvcry user using it to
infect their programs. Every program that gets

0167-4048/89/$3.50 0 1989, Elsevier Science Publishers Ltd. 325

F. Cohen/Computational Aspects of Computer Wruses

infcctcd may also act as a virus and thus the in&c-
tion spreads.

The following pseudo-program shows how a virus
might bc written in a pseudo-computer language.
The “: = ” symbol is used for definition, the “:”
symbol labels a statement, the “;” scparatcs statc-
n1mts, the j’ = ” symbol is used for assignment or
comparison, the “ - ” symbol stands for not, the “{ ”
and “}” symbols group scquenccs of statcmcnts
togcthcr, and the “. ..” symbol is used to indicate
that an irrclcvant portion of code has been left
unspccificd.

program virus: =
{ 1234M7;

subroutine infect-cxecutablc: =
{loop:filc = g - ct randonl-exccutablc-~~1~;

if first-line-of-f& = 12345417
then goto loop;

prepcnd virus to file;
I

subroutine do-damage: =
{ whatcvcr damage is to bc done}

subroutine trigger-p&d: =
jrcturn true if some condition holds}

main = program: =
{ infect-cxccutablc;
if trigger-pulled then do-damage;
goto newt;}

next:}

A Simple Virus “V”

This cxamplc virus “v” scarchcs for an mlinfcctcd
cxccutablc file “E” by looking for cxecutablc files
without the “1234567” at the beginning, and prc-
pends V to E, turning it into an infcctcd file “1”. V
then cheeks to see if sonic triggering condition is
true, and does damage. Finally, V exccutcs the rest
of the program it was prcpcndcd to (prcpcnd is
used to mean “attach at the beginning”). When the

326

user attempts to cxecutc E, I is cxccutcd in its place;
it infects another file and then cxccutcs as if it wcrc
E. With the cxccption of a slight delay for infcc-
tion, I appears to bc E until the triggering condi-
tion causes damage.

A virus need not bc used for dcstructivc purposes
or be a Trojan horse. As an cxamplc, a compression
virus could bc written to find uninfcctcd cxccut-
ables, compress them upon the user’s permission,
and prcpend itself to them. Upon execution, the
infcctcd program dccomprcsses itself and cxccutcs
normally. Since it always asks permission before
performing scrviccs, it is not a Trojan horse, but
since it has the infection property, it is a virus.
Studies indicate that such a virus could saw over
j(M, of the space taken up by cxccutablc files in an
avcragc system. The performance of infcctcd pro-
grams dccrcascs slightly as they arc dccomprcsscd,
and thus the compression virus implcmcnts a par-
ticular timespace tradeoff. A sample compression
virus could be written as follows:

program compression-virus: =
{01234507;

subroutine infect-cxccutablc: =
{loop:filc = g’t-random-exccutablc-filc;
if first-lint-of-file = 0 12345h7 then
then goto loop;
compress file;
prcpend compression-virus to file;

I

main-program: =
{if ask-pcrmissiou then infcct-

cxccutablc;
uiiconiprcss the-rest-of-this-f& into

tmpt~lc;
run tiiipfilc;}

A Compression Virus “C”

This program “C” finds an uninfcctcd cxccutablc
“E”, comprcsscs it, and prcpcnds C to form an

Computers and Security, Vol. 8, No. 4

infected cxccutable “I”. It then uncompresses the
rest of itself into a temporary file and executes nor-
mally. When I is run, it will seek out and compress
another executable before decompressing E into a
temporary file and executing it. The effect is to
spread through the system, compressing executable
files and decompress them as they arc to bc
executed. An implementation of this virus has been
tcstcd under the UNIX operating system, and is
quite slow, predominantly because of the time
required for decompression.

As a more threatening example. let us SUPPOSC that
I

we modi@ the progr& V by spccifyini “‘triggcr-
Dulled” as true after a &en date and time. and
I

specifying “do-damage” Oas an infinite loop. With
the level of sharing in most modern computer
systems, the cntirc system would likely become
unusable as of the spcciflcd date and time. A great
deal of work might bc required to undo the
damage of such a virus. This modification is shown
hcrc

. . .
subroutine do-damage: =

{loop: got0 loop;}

subroutine trigger-pulled: =
{if year > 1984 then true otherwise false;}

. . .
A Denial of Services Virus

As an analogy to this virus, consider a biological
disease that is 100% infectious, spreads whcncvcr
people communicate, kills all infected persons
instantly at a given moment, and has no dctcctablc
side cffccts until that moment. If a delay of even 1
week were used between the introduction of the
disease and its effect, it would be very likely to
leave only a few people in remote villages alive, and
would certainly wipe out the vast majority of
modern society. If a computer virus of this type
could spread throughout the computers of the
world, it would likely stop most computer usage
for a significant period of time, and wreak havoc
on modern government, financial, business, and
academic institutions.

3. Symbols Used in Computability Proofs

Throughout the remainder of this paper, WC will
be using logical symbols to de!& and prove
theorems about “viruses” and “machines”. WC
begin by detailing these symbols and their intended
interpretation.

WC denote sets by enclosing them in curly brackets
“{” and “I” and the elements of sets by symbols
separated by commas within the scope of these
brackets (e.g. {a,b] stands for the set comprising clc-
ments a and b). We normally USC lower case letters
(e.g. a,b,...) to denote clcments of sets and upper
case letters (e.g. A,B,. ..) to denote sets themselves.
The exception to this rule is the case where sets arc
elements of other sets, in which case they arc both
sets and elements of sets, and WC USC’ the form most
convenient for the situation.

The set theory symbols E, C, U , and, or, Y’, iff,
and 3 will be used in their normal manner, and the
symbol IN will be used to denote the set of the
natural numbers (i.e. {0, 1,. ..}) and II will bc used to
represent the integers (i.e. { 1,. , . }).

The notation {x s.t. P(x)} where P is a predicate will
be used to indicate all x s.t. P(x) is true.

Square brackets “[” and “1” will be used to group
together statcmcnts where their grouping is not
cntircly obvious, and will take the place of normal
language parcns.

The “(” and “)” parens will be used to denote
ordcrcd n-tuples (sequences), and elements of the
sequence will be separated by “,“s (e.g. (I,&.. .) is the
sequence of integers starting with 1).

The “. . ~” notation will be used to indicate an
indefinite number of elements of a set, members of
a sequence, or states of a machine wherein the
indicated elements arc too numerous to fill in or
can be gcncratcd by some given procedure.

When speaking of sets, we may use the symbol “t”
to indicate the union of two sets (eg.

327

F. CohenlComputational Aspects of Computer Wruses

{al+{bl = {a,bl), h t e symbol U to indicate the union
of any number of sets, and the symbol u-” to indi-
cate the set which contains all clcmcnts of the first
set not in the second set (eg. { a,b}-{a} = {b}). WC
may also use the “ = ” sign to indicate set equality.
In all other cases, WC use thcsc operators in their
normal arithmetic scnsc. The 1 . ..I operator will be
used to indicate the cardinality of a set or the num-
ber of elements in a sequence as ap ropriatc to the
situation at hand (e.g. l{a,b,c}l =3, r(a,b ,..., f)l =6),
and the symbol 1 h w en standing alone will indicate
the “mod” function (eg. 12 I10 = 2).

4. Computing Machines

We begin our discussion with a definition of a
computing machine [2] which will scrvc as our
basic computational model for the duration of the
discussion. The basic class of machines WC will be
discussing is the set of machines which consist of a
finite state machine (FSM) with a “tape head” and a
semi-infinite tape (Fig. I). The tape head is point-
ing at one tape “cell” at any given instant of time,
and is capable of reading and writing any of a finite
number of symbols from or to the tape, and of
moving the tape one cell to the left (-l), right (+ l),
or keeping it stationary (0) on any given “move”.
The FSM takes input from the tape, sets its next
state, products output on the tape and moves the
tape as functions of its internal state and maps.

tape

+-+

+ _____ + I 1 cdl 0

Finite tape +-+

State = = = = = > 1 I cell I

Machine head f-f

+ ~~~~~ + I I

A set of computing machines “TM” is dcfincd as
follows:

VM[M E TM] iff
M: (S,, I,, 0,5,X1, * I,,

N,:S, XI, - S,,

L~,:S,xI, + d)

where the state of the FSM is one of IZ+ 1 possible
states,

S, = is,,,. . ., $1 I2 EN

the set of tape symbols is one of j-t- 1 possible
symbols, and

I,={i I,)...) ‘,} jGN

the set of tape motions is one of three possibilities

d={-I,o, -i-l}.

WC now define three functions of “time” which
describe the behavior of TM programs. Time in
our discussion cxprcsses the number of times the
TM has performed its basic operation, called a
“tnovc” by Turing.

The “state(timc)” function is a map from the move
number to the state of the machine after that move

x,:!N-s, ;statc(time)

the “tape-contcnts(timc, ccl1 #)” function is a map
from the move number and the cell number on the
tape, to the tape symbol in that ccl1 after that move

q ,:[NxlIV ‘1, ;tapc-contcnts(tinie,ccll #)

and the “ccll(time)” function is a map from the
move mmlbcr to the number of the ccl1 in front of
the tape head after that move.

P,:lN + [N ;cell(timc)

328

Computers and Security, Vol. 8, No. 4

WC call the 3-tuplc (&, q M, P,& the “history”
(H,) of the machine, and the H, for a particular
move number (or instant in time) the “situation” at
that time. WC describe the operation of the
machine as a series of “moves” that go from a given
situation to the next situation. The initial situation
of the machine is described by

(gM(O) =~Mo, ‘M(o, i) = q MO,i? PM(~) =Po) iEN

All subsequent situations of the machine can be
determined from the initial situation and the func-
tions “N”, “O”, and “D” which map the current
state of the machine and the symbol in front of the
tape head before a move to the “next state”,
“output”, and “tape position” after that move. We
show the situation here as a function of time

[8,(t+l)=N(SM(t), q M(ttPM(t)))] and

These machines have no explicit “halt” state which
guarantees that from the time such a state is
entered, the situation of the machine will never
change. WC thus define what we mean by “halt” as
any situation which does not change with time.

WC will say that “M Halts at time t” iff

[Y’t’t

[s,(t) = s,(t’)] and

[vi E[N [~~(t, i) = q ~(t’, i)]] and

K.&) = &l(t’)ll

and that “M Halts” iff

[3 t GIN [M Halts at time t]]

We say that “x runs at time t” iff

[[x E I,’ where i E II] and

[S(t) = 8,,] and

and that K$;;,“)!;; .) I3 (tt P(t)+ i)) = 41 9, .
[3 t EiN [x runs at time t]]

As a matter of convcnicncc, we define two struc-
turns which will occur often throughout the rest of
the discussion. The first structure “TP” is intended
to describe a “Turing machine Program”. We may
think of such a program as a finite scqucncc of
symbols such that each symbol is a mcmbcr of the
legal tape symbols for the machine under con-
sideration. WC define TP as follows:

[YM ETM[Yv[YiG II

[v E TP,] iff[v E I,,,,‘]]]]

The second structure “TS” is intended to describe a
non-empty set of Turing machine programs
(Turing machine program Set) and is d&cd as

[YM E TM [YV[V E TS] iff

i) [3v E V] and

ii) [Vv E V[v E TPM]]]]

The USC of the subscript M (cg. TP,) is unnecessary
in those cases whcrc only a single machine is under
consideration and no ambiguity is present. WC will
therefore abbrcviatc throughout this paper by
removing the subscript when it is unnecessary.

5. Formal Definition of Viruses

WC now define the central concept under study,
the “viral set”. In earlier statements, WC have infor-
mally dcfincd a “virus” as a “program” that modi-
fies other “programs” so as to include a (possibly
“evolved”) version of itself. The mathematical
cmbodimcnt of this definition for Turing
machines, given below, attempts to maintain the
generality of this definition.

Several previous attempts at definition failed
because the idea of a singleton “virus” makes the
understanding of “evolution” of viruses very diffi-
cult, and as we hope to make clear, this is a central
theme in the results presented herein. The viral set
cmbodics evolution by allowing elements of such a
set to produce other elements of that set as a result
of computation. So long as each “virus” in a viral
set produces some element of that viral set on some

329

F. Cohen/Computational Aspects of Computer Ruses

part of the tape outside of the original virus, the set
is considered “viral”. Thus “evolution” may be

For convcnicncc of space, WC will use the expression

dcscribcd as the production of one clement of a a&C
viral set from another clement of that set.

The sequences of tape symbols WC call “viruses”
dcpcnd on the machine on which zhcy are to bc
interpreted. We may expect that a given sequcncc
of symbols may bc a virus when interpreted by one
TM and not a virus when interpreted by another
TM. Thus, WC dcfinc the pair “VS” as follows:

to abbreviate part of the previous definition start-
ing at lint [4] whcrc a, B, and C arc specific

1] VMYV
21 (M,V) E VSiff

4 [V E TS] and [M E TM] and

-cl
jl K V’vHM
61 t[PM(t) =j and

71 S,(t) = S,, and

81
91 I=+

(“~(t,j),...,n~(j,j-IVI~l))=V

101 [Iv’EV[31’> t[3j’

1’1 1
‘21

w-lv’l) Gjl 01 K.i-I~l)~j’ll ad

‘31

(OM(t’,j’),..., •l\,l(t’,j’+Iv’I~l))=~‘and
[g?‘s.t.[t < t” < t’] and

‘4 [PM(j”) 65 {j’,...,j’- Iv’I-l}]]

151 111 1 1

We will now rcvicw this definition lint by line

for all “M” and “V”,
the pair (M, V) is a “viral set” if and only if:
V is a non-empty set of TM sequcnccs and M is a TM and
for each virus “v” in V, for all histories of machine M,

For all times t and cells j
if the tape head is in front of ccllj at tirnc t and

TM is in its initial state at time t and
the tape cells starting at i hold the virus v

then

thcrc is a virus v’ in V, a time t’ > t, and place j’ such that
at place j’ far enough away from v
the tape cells starting atj’ hold virus v’
and at some time t” between time t and time t’

v’ is written by M

Computers and Security, Vol. 8, No. 4

instances of v, M, and V respectively as follows:

[VB [VC

[(M,C) E VS] iff

[[C E TS] and [M E TM] and

[vaEC[a =k Cl]]]]

We have defined the predicate VS over all Turing
machines. We have also stated our definition, so
that a given elcmcnt of a viral set may generate any
number of other elements of that set depending on
the rest of the tape. This affords additional gener-
ality without undue complexity or restriction.
Finally, we have no so-called “conditional viruses”
in that EVERY element of a viral set must
ALWAYS gcncratc another element of that set. If a
conditional virus is desired, we could easily add
conditionals that either cause or prevent a virus
from being cxccutcd as a function of the rest of the
tape, without modifying this definition.

We may also say that V is a “viral set” with respect
to M

iff [(M, V) E VS]

and dcfkc the term “virus” with rcspcct to M as

{[v E V] s.t. [(MJ) E VS]}

WC say that “v ~VO~VCS into v’ for M” iff

[(MJ) E VS
[[vEV] and [v’EV] and [v Z- {v’}]]

that “v’ is cvolvcd from v for M” iff

“v evolves into v’ for M”

and that “v’ is an evolution of v for M” iff [vvq3vcu[v % VI]]

[(MV) E VS

[3iE oV[3V’EV’
[v E V] and [v’ E V] and

[t’vk E V’[vk =% v,, ,I] and
[31EOV

[3mc N
[[l < m] and [v, = v]

and]v,,, = ~‘1111111

In other words, the transitive closure of =Z- start-
ing from v, contains v’.

6. Basic Theorems

Our most basic theorem states that any union of
viral sets is also a viral set

Theorem 1:

vMVU*
[VV E U*s.t.(M,V) E VS] ==+-

[(M, U U’) E VS]

Proof:
Define U = U U*
by definition of U

I) [Vvq3VEU*s.t.vq]
2) [HI E u*[vv E V[v E U]]]

Also by definition,

[(M,U) E VS] iff

[[U E TS] and [M E TM] and

[VVE U[v JL- U]]]

by assumption,

[VV E u*

[tivEV[v &- VI]]

thus since

and
[Vv E U[3V E u*[v z- V]]]
[v/v E U*[V c U]]

331

F. Cohen/Computational Aspects of Computer Vruses

hcncc [Vv E U[v 2=- U]]

thus by definition, (M,U) E VS
QE.D.

Knowing this, WC‘ prove that there is a “largest”
viral set with respect to any machine, that set being
the union of all viral sets with respect to that
inachinc.

Lcninia 1.1:

[YM E TM

[[Ns.t. [(M,V) E VS]] ==+

F-J

i) [(M,U) E VS] and

ii) [YV[[(M,V) E VS] =+

l~vGV[vE u1111111

WC call U the “largest viral set” (LVS) w.r.t. M, aud
d&C

(M,U) E LVS ifqi and ii]

Proof:
assume [3V[(M,V) E VS]]

choose U = U (V s.t. [(M,V) E VS]}

now prove i and ii

Proof of i: (by Thcorcm 1)

(A%[U {V s.t. [(MJ) E VS]}) E VS

thus (M,U) E VS

Proof of ii by contradiction:
assuuic ii) is false:
thus [IV s.t.

1) [(M,V) E VS] and
2) [Iv G v s.t. [v 6 U]]]

but [“V s.t. (M,V) E VS
[Yv E V[v E U]]] (definition of union)

thus [v 4 U] and [v E U] (contradiction)
thus ii) is true
QE.D.

Having d&cd the largest viral set with rcspcct to
a rnachinc, WC now defmc a “smallest viral set” as a

332

viral set of which no proper subset is a viral set
with rcspcct to the given rnachinc. There may be
many such sets for a given rnachinc.

WC d&c SVS as follows:

[VM [YV

[(M,V) E SVS] iff
1) [(M,V) E VS] and
2) [(au s.t.

[U C V] (proper subset) and

I(MJJ) E v~llll

WC now prove that thcrc is a rnachinc for which
the SVS is a simlcton set and that the minimal viral
set is thcrcforc ~inglcton.

Theorem 2:

[3M[3V
i) [(M,V) E SVS] and

ii) llVl = ‘III

Proof: by demonstration
M:S={s,,,s,}, 1=(&l},

SXI N

s,,,(J $1

so, 1 Sl
s,,() %I
s,,l SI

0 D

0 0
1 +1

1 0

1 +1

I{(l)}(= 1 (by definition of the operator)

[(M,{(1))) E SVS] iff
1) [(M,{(1))) E VS] and

2) [(MA I) @ VS]

(M,{ }) @ VS (by definition since {}4 TS)

as can bc vcrificd by the reader:

(1) %= {(‘)I (t’= r-2, f’=t+l,j’=j+ 1)

thus (M,{(l)]) E VS
QE.D.

Computers and Security, Vol. 8, No. 4

With the knowledge that the above sequence is a
singleton viral set and that it duplicates itself, WC
suspect that any sequence which duplicates itself is
a virus with respect to the machine on which it is
self-duplicating.

Lemma 2.1:

[VMETM[VUETP

[[u 2 141 - KM4-4 ~VSIIII

Proof:
by substitution into the definition of viruses:

[VM E TM[‘d{u)
[[(Mhd) E VS] iff

[[{u}ETS] and [u =% {~I]]11

since [[u E TP] =+ [{u} E TS]] (definition of TS)
and by assumption,

[u Z- 141

[(MA4 EVS]

QED.

SXI N 0

The cxistencc of a singleton SVS spurs intcrcst in
whcthcr or not there arc other sizes of SVSs. WC
show that for any finite integer i, thcrc is a
machine such that there is an SVS with i elements.
Thus, SVSs come in all sizes. We prove this fact by
demonstrating a machine that generates the
“(xmod i)+l”th element of a viral set from the xth
clement of that set. In order to guarantee that it is
an SVS, we force the machine to halt as soon as the
next “evolution” is gencratcd, so that no other clc-
mcnt of the viral set is generated. Removing any
subset of the viral set guarantees that some clcmcnt
of the resulting set cannot be generated by another
clcmcnt of the set. If WC remove all the elements
from the set, we have an empty set, which by
definition is not a viral set.

Theorem 3:
[VE II

[3M E TM[~v

I) [(M,V) E SVS] and

4 [IV1 = ill11

Proof By demonstration

M: S={s(,,s ,,..., , , s} I={O,l,..., i),
Y x E{l,...,ii

D

LO
S,,,x
. . .
s * I 9

so
s,

s,

0
x

[xl i]+l

0
+1

0

;if I = 0, halt
;if I =x, goto state x, move right
;othcr states generalized as:
; write [x] i] - 1, halt

proof of i) proof of “1) (M,V) E VS”
define V = {(l),(2),. . .,(i)i
IV] = i (by definition of operator) (1) 2=- I(41 (t’=t+2,t”=t+ I,

j’=j+ 1)
. . .

proof ot‘ii)
[(M,V) E SVS] iff

1) [(M,V) E VS] and
2) [au[[UcV] and [(M,U)EVS]]]

([i-l]) =f~ {(i)} (t’ = t + 2, t” = t + 1,
j’=j+ 1)

(i) %- {(1)} (f’ = tt2, t” = t+ 1,
j’=j+ I)

and (l)EV,..., and (i)EV
(as can be verified by simulation)

333

F. Cohen/Computational Aspects of Computer Wruses

thus, [YvEV(V %- V]]
so (M,V) E VS
proof of “2) [dU[[U C V] and [(M,U) E VS]]]”
given [3t,jG IN [3v E V

[[m(t,j)=v] and

[S(t) = S,,] and

[P(t) =A1

* [[M halts at time t + 21 and
[vi i] + 1 is written at j + 1 at t + l]]]

(as can bc verified by simulation)

and [YXE {l,..., i}[(~) E V]] (by definition of V)

awncdcon~;d~ L., iI [X %- i[~) i] + 1 i]]

[xl i] + 1 is the ONLY symbol written
outside of (x)

thus [2X’ # [XI i] + 1 [A? J% {X’}]]
now (Y(X) E V

KI+l + WV - K4~vl11

assume [3U c V[(M,U) E VS]]

[U={1] - [(M&J) 4 VS] thus U # {]
by definition of proper subset

[UCV] - [3vEV[v4U]]

but [3v~V[v4U]]
- [1v’EU[[v’I i]+l =v]

and [v G U]

and [~v”E V[v’ =%- v”]]] .

thus [~VG u[v’ - v]]

and [v’ E U]

thus [(M,U) 4 VS] which is a contradiction

QE.D.

7. Abbreviated Table Theorems

allow a large set of states, inputs, outputs, next
states, and tape movements to bc abbreviated in a
single statement. Thcsc “macros” arc simply abbrc-
viations and thus WC display the means by which
our abbreviations can be expanded into state tables.
This technique is csscntially the same as that used
in ref. [2], and WC rcfcr the reader to this manu-
script for further details on the USC of abbrcviatcd
tables.

In order to make cffcctivc USC of macros, WC will
USC a convcnicnt notation for describing large state
tables with a small number of symbols. When WC
dctine states in thcsc state tables, WC will often rcfcr
to a state as S,, or S,,_, to indicate that the actual
state number is not of import, but rather that the
given macro can bc used at any point in a larger
table by simply substituting the actual state
numbers for the variable state numbers used in the
definition of the macro. For inputs and outputs,
where WC do not wish to cnumcratc all possible
input and output combinations, WC will USC

variables as well. In many cases, WC may dcscribc
entire ranges of values with a single variable. WC
will attempt to make thcsc substitutions clear as WC
dcscribc the following set of macros.

The “halt” macro allows us to halt the machine in
any given state S,,. We USC the “*” to indicate that
for any input the machine will do the rest of the
specified function. The next state entry (N) is S,, so
that the next state will always be S,,. The output (0)
is * which is intcndcd to indicate that this state will
output to the tape whatever was input from the
tape. The tape movement (D) is o to indicate the
tape cell in front of the tape head will not change.
The rcadcr may verify that this meets the condi-
tions of a “halt” state as d&cd earlier.

name S,I N 0 D

WC now move into a series of proofs that
demonstrate the existence of various types of
viruses. In order to simplify the presentation, WC
have adopted the technique of writing “abbreviated
tables” in place of complctc state tables. The basic
principal of the abbreviated table (or macro) is to

halt s * ,I?

(halt the machine)

S,,
* 0

The “right till x” macro describes a machine which
increments the tape position (P(t)) until such posi-

334

Computers and Security, Vol. 8, No. 4

tion is reached that the symbol x is in front of the
tape head. At this point, it will cause the next state
to be the state after S,, so that it may be foliowcd by
other state table entries. Notice the USC of “clsc” to
indicate that for all inputs other than X, the
machine will output whatever was input (thus
leaving the tape unchanged) and move to the right
one square.

name

R(x)

S,I N 0 D

S,,,X s I, + I .I 0
S,,clse s,, else +1

(R(X): right till X)

The “left till 2’ macro is just like the R(x) macro
except that the tape is moved left (-1) rather than
right (+ 1).

name

L(x)

V N 0 D

S,!,X s,,-1 .X 0
s ,,,clsc S, else -1

(L(x): left till X)

The “change s to y until 2’ macro moves from left
to right over the tape until the symbol z is in front
of the tape head, replacing cvcry occurrcncc of x

with y, and leaving all other tape symbols as they
wcrc.

name %I N 0 D

C(%,y,4 S”,?Z SF, z 0

s,,,x s,, Y +1

S,,else s,, clsc +1

(C(X,,Y,Z): change x to y till Z)

The “copy from s till y after 2’ macro is a bit more
complex than the previous macros bccausc its size
depends on the number of input symbols for the
machine under consideration. The basic principal is
to dcfinc a set of states for each symbol of interest
so that the set of states rcplaccs the symbol of intcr-
cst with the “left of tape marker”, moves right until
the “current right of tape marker”, rcplaccs that
marker with the desired symbol, moves right one
more, places the marker at the “new right of tape”,
and then moves left until the “left of tape marker”,
rcplaccs it with the original symbol, moves right
one tape square, and continues from there. The
loop just described requires sonic initialization to
arrange for the “right of tape marker” and a test to
detect the y on the tape and thus dctcrminc when
to complete its operation. At completion, the
macro goes onto the state following the last state
taken up by the macro and it can thus be used as
the above macros.

335

F. CohenlComputational Aspects of Computer V/i-crses

nan1c $1 N 0 11

CPY(s,y,z) (copy from s till y to after Z)

S
,I ‘J ‘W)

s,,r IO S ,, I I Y
s, i’ lt(“M”)

s, i’., sky2 *

Sk,.i..2 Sk i* , “M”

s,.y , L(“N”)

s, 5’ -(S,,.,
*

For each of the above macros (cxccpt “halt”), the
“arguments” must be specified ahcad of time, and if
the tape is not in such a configuration that all of
the required symbols arc prcscnt in their proper
order, the macros may cause the machine to loop
indcfinitcly in the macro rather than leaving upon
completion.

WC now show that thcrc is a viral set which is the
size of the natural numbers (countably infinite), by
demonstrating a viral set of which each clement
gcncratcs an clement with one additional symbol.

0

$1

0

0

+ 1

-1

0

+I
0

+I

; right till s
; write “N”
; right till y
; right till z
; right one more
; write “M”
; left till “N”
; replace the initial s
; if y, done
; else write “N” an
;gotoS,, 5 times the input
; symbol number
; right till “M”
; copy completed
; goto the “M”
; write the copied symbol
; write the trailing “M”
; left till “N”
; rcwritc * and go on

Since, given any clcmcnt of the set, a new clcmcnt
is gmcratcd with cvcry cxccution and no prc-
viously gcncratcd clcmcnt is cvcr rcgcncratcd, WC
have a set gcncratcd in the same inductive manner
as the natural numbers, and Acre is thus a onc-to-
one mapping to the intcgcrs from the gcncratcd set.

Thcorcm 4:

[IMETMjVETS s.t.
1) [(M,V) E VS] and

4 [IVI = PI1

336

Computers and Security, Vol. 8, No. 4

Proof by demonstration:

SJ N 0 D

M: S,,,L
S,,,clsc

S,,O
S2,K

S,
S,
Si

SC,
S,,L
S,,S

S,
S,,.v
S IO
S II
S 12
S I?

S,

$O,\,R)

S,
S,

:!R)
L(x or L)
S c II

2(x)
s IO

f<(x)

S,,
S Ii

V = { (LOR), (LOOR),. . ., (LO.. .OR),. . . }

proof of 1) (M,V) E VS
dcfmition:
[VM E TM[YV

[(M,V) E VS] iff
[[V E TS] and [Y vEV[v s w111

; start

; change OS to x’s till R
; write R
; write L
; write s

move left R

0

+1
0

0

; left till or L
; L got0 sl 1

; if x replace with 0
; move right till s
; change to 0, move right
; write x and goto S5
; move right till x
; add one 0
; halt with K on tape

not viral scqucnces, thus proving that no finite state
machine can be given to dctcrminc whether or not
a given (M,V) p air is “viral” by simply enumerating
all viruses (from Thcorcm ‘c) or by simply
cnumcrating all non viruses (by Lemma 4.1).

Lemma 4.1:
[3METM 3WETS

1) [WI = IoVl] and I
2) [VWE W$W’C w

[w - w’lllll

Proof:

using M from Thcorcm 1, WC choose
W={(x),(xx))...) (x.x))... }

clearly [M ETM] and [WETS] and [I WI = loll]
since (from the state table)

[YtuG W [w runs at time t] -
[w halts at time t]]

[Ji > t[P&‘) + c&)11
thus [kUG W[dW’C W[w - W’]]]
QE.D.

337

E Cohen/Computational Aspects of Computer Wruses

It turns out that the above case is an example of a
viral set that has no SVS. This is because no matter
how many elements of V are removed from the
front of V, the set can always have another element
removed without making ii non-viral.

We also wish to show that there are machines for
which no sequcnccs arc viruses, and do this trivially
below by defining a machine which always halts
without moving the tape head.

Lemma 4.2:

[3M E TM [aV E TS [(M,V) E VS]]]

Proof by demonstration:

SJ N 0 1>

M: sO,all SO 0 0

.%I N 0

$tr;lly verified that [Yt [PM(f) = PO]])
. .

WC show that for ANY finite scqucnce of tape
symbols “v”, it is possible to construct a machine
for which that sequence is a virus. As a side issue,
this particular machine is such that LVS = SVS, and
thus no scqucncc other than “v” is a virus with
respect to this machine. WC form this machine by
generating a finite “recognizer” that cxamincs
successive cells of the tape and halts unless each cell
in order is the appropriate clement of v. If each cell
is appropriate WC replicate v and subsequently halt.

Thcorcm 5:

Proof by demonstration:

v= iv,,,v ?,...,v~} whcrc [kG[N] and [VE I’]
(definition of TP)

11

M: sl~~vo
s,,,clsc
. . .

Sh,Vk

Sk,&

SL.1

. . .

Sk+k

sl
so

sk- I

%I

sk-2

sk t k

v0
0

Vk

0

VlI

vk

it is trivially vcrificd that [v s {v}]
and hence (by Lemma 2.1) [(M,{ v}) E VS]
QED.

With this knowledge, we can easily gcneratc a
machine which recognizes any of a finite number of
finite scqucnccs and gcncrates either a copy of that
scqucnce (if we wish each to be an SVS), another
element of that set (if WC wish to have a complex
dependency between subsequent viruses), a given
sequence in that set (if WC wish to have only one

+1
0

+1
0

t1

-0

(recognize 1st elcmcnt of v)
(or halt)
(etc till)
(recognize kth clement of v)
(or halt)
(output 1 st element of v)
(ctc till)
(output kth clement of v)

SVS), or each of the elements of that set in
scquencc (if we wish to have LVS = SVS).

We will again define a set of macros to simplify
our task. This time, our macros will be the “rccog-
nize” macro, the “gcneratc” macro, the “if-thcn-
clsc” macro, and the “pair” macro.

Computers and Security, Vol. 8, No. 4

The “recognize” macro recognizes a finite sequence
and leaves the machine in one of two states
depending on the result of recognition. It leaves the
tape at its initial point if the sequence is not recog-
nized so that successive recognize macros may be

used to recognize any of a set of scqucnccs starting
at a given place on the tape without additional dif-
fkultics. It leaves the tape at the cell one past the
end of the sequence if recognition succeeds, so that
another scqucncc can be added outside of the
recognized sequence without additional difficulty.

SJ N 0 D

recognize(v) for v of size z

Sn,vO SF,
s * S,_,+,P, “I 9
. . .
S n+k,Vk h-k-1

Lk,* s, -z-r-k

. . .
S,+, ,v, S,+,-,
S,-,& ,* S n-2
s * S n+.Zt nTZ-1
. . .

SP.,,ZP I
SIl-Z-Z

vo $1
* 0

(etc till)

vk +1
*

-1

(etc till)

v, +1

v.? $1
* -1

(“didn’t recognize” state)
(“did recognize” state)

(rccognizc 0th clement)
(or rewind 0)

(rccognizc kth elcmcnt)
(or rewind tape)

(rccognizc the last one)
(or rewind tape)
(rewind tape one square)
(for each of k states)

Th e ugeneraten macro simply generates a given
sequence starting at the current tape location:

SJ N 0 D

generate(v) where v is of length k
s, S II+1 VO
. . .
S ntk S w+k+l vk

+1

+o

The “if-then-else” macro consists of a “rccognizc”
macro on a given sequence and goes to a next state
corresponding to the initial state of the “then”
result if the recognize macro succeeds and to the
next state corresponding to the initial state of the
“else” result if the recognize macro fails

S,I N 0 D

if(v) (then-state) else (else-state)

S, recognize(v)
S
S

m+al”l;I.* else-state * 0
then-state *

n+2lv/9 0

The “pair” macro simply appends one sequcncc of
states to another and thus combines two sequences
into a single sequence. The resulting state table is
just the concatenation of the state tables

SJ N 0 D

pair(a, b)

S,,
S,, :

We may now write the previous machine “M” as

if(v) (pair(gcncratc(v), halt)) else (halt)

WC can also form a machine which recognizes any
of a finite number of sequences and generates
copies,

if (v~,) (pair(gcnerate(v,,),halt)) else
if (v,) (pair(generatc(v,), halt)) else

if (vk) (pair(gcnerate(v,),halt)) else (halt)

339

F. Cohen/Computational Aspects of Computer Wruses

a nlachinc which gcncratcs the “next” virus in a
finite “ring” of viruses front the “previous” virus

if (v(,) (pair(gcncrate(v,),halt)) else
if (v,) (pair(generatc(v,),halt)) clsc

. . .
if (vk) (pair(gcnerate(v,,),halt)) else (halt)

and a nlachinc which gcncratcs any dcsircd

dcpcndency.

if (v,)) (pair(gencratc(v,,),halt)) else
if (v,) (pair(gencratc(vY),halt)) else

. . .

if (vk) (pair(gcneratc(v,),halt)) clsc (halt)
where v,,, v Y’ ...’ v,E iv,,..., Vk}

WC now show a niachine for which cvcry scqucncc
is a virus, as is shown in the following sinlplc
1% cinnla.

Lciiima 5.1 :

(~METM

[‘A E TP[3V

[[v E V] and [(M,V) E LVS]]]]]

Proof by dcnlonstration:

I={_x}, S=(S,,}

S,I N 0

M: S,,J SC, s

trivially sc’cn from state table:

[~tin~t[‘JS[~P(notMhalts]]]]

and [THE OV[~VEI”

[[v 2 ((X)1] and

[(M,J(X),vi) E LVS]]]]

1 1CIlCC [vv E TP[(Mb,(X)J) E VS]]

D

+1

and by Theorcnl I, [IV[[v E V] and [(M,V) E LVS]]]

Q.E.D.

8. Computability Aspects of Viruses and
Viral Detection

We can clearly gcncratc a wide variety of viral sets
and the USC of macros is quite helpful in pointing
this out. Rather than follow this line through the
cnunlcration of any nunlber of other cxanlplcs of
viral sets, WC would like to dcterminc the power of
viruses in a niorc gcncral nianncr. In particular, WC
will cxplorc three issues.

The “dccidability” issue addrcsscs the question of
whether or not WC can write a TM prograni
capable of dctcrmining, in finite tinlc, whcthcr or
not a given sequcncc for a given TM is a virus. The
“evolution” issue addrcsscs the question of whcthcr
WC can write a TM program capable of dctcrmin-
i ng, in a finite time, whether or not a given
scqucncc for a given TM “gcncrates” another given
scqucncc for that machine. The “computability”
issue addrcsscs the question of dctcrnlining the
class of scquenccs that can bc “cvolvcd” by viruses.

WC now show that it is undccidablc whcthcr or
not a given (M,V) p air is a viral set. This is done by
reduction front the halting problcnl in the following
nlanncr. WC take an arbitrary nlachine M’ and tape
sequence V’, and gcncratc a machine M and tape
scqucncc V such that M topics V’ front inside of V,
sinlulates the cxccution of M’ on V’, and if V’ halts
on M’ replicates V. Thus, V replicates itself if and
only if V’ would halt on nlachinc M’. WC know
that the “halting problem” is undecidable 121, that
any prograni that rcplicatcs itself is a virus [Leninia
2.11, and thus that [(M,V) E VS] is undccidablc.

Thcorcni 0:

[jl>~TM[3s, ES,,

[VM = TM [VV E TS

I) [I’ halts] and

2) [S,,(t)= s,] iff [(M,V) E VS]]]]]

340

Computers and Security, Vol. 8, No. 4

“Proof by reduction from the Halting Problem:

[vMETM[1M’ETM
[,,L” 4 I,,] and [,R”G IM,] and
[,,l” G I,,] and rr” 4 I,,] and

11
=+- [[NM8 = S,] and [O,, = IM] and [I&,, = o]]]

WC must take some care in defining the machine
M’ to cnsurc that it CANNOT write a viral
scqucnce, and that it CANNOT overwrite the cri-
tical portion of V which will cause V to rcplicatc if
M’ halts. Thus, WC restrict the “simulated” (M’,V’)
pair by requiring that the symbols L,R,l,r not bc
used by them. This restriction is without loss of

M:

S,I N 0

generality, since WC can systematically replace any
occurrences of these symbols in M’ without chang-
ing the computation pcrformcd or its halting
characteristics. We have again taken special care to
cnsurc that (M’,V’) cannot intcrfcrc with the
scqucnce V by restricting M’ so that in ANY state, if
the symbol “1” is encountered, the state remains
unchanged, and the tape moves right by one
square. This cffcctivcly simulates the “semi-infi-
nite” end of the tape, and forces M’ to remain in an
area outside of V. Finally, WC have rcstrictcd M’
so that for all states such that “M halts”, M’ goes
to state S,,.

now by [2]
[BDETM

[~M’ETM[~V’ETS
1) [D halts] and
2) [S,,(t) = s,] iff [(M’,V’) halts]]]]

WC now construct (M,V) s.t.
[(M,V) E VS] iff [(M’,V’) Halts]

as follows:

1)

S,,,L
s,,,clsc

S,
SA

S,
S,
Si

S,
S.,. I

S, L

S,, s
CPY(“,“,“r”,“R”)

L(,,L”)
R(“R”)
Sj 1

rj;‘:L.)

CPY(“L”,“R”,“K”)

V = {(Ll,V’,r,R)i

Since the machine M requires the symbol “L” to be
under the tape head in state S,, in order for any
program to not halt immcdiatcly upon execution,
and since WC have restricted the simulation of M’
to not allow the symbol “L” to be written or con-
tained in V’, M’ CANNOT gencratc a virus.

VtE rqvs, < s,

[JP,(t)[[I Z “L”] and [0 = “L”]]]]]

0

0

-1

; if “L” then continue
; clsc halt
; Copy from 1 till r after R
; left till “L”
; right till “K”
; move to start of (M ‘,V’)
; the program M’ goes hcrc
; niovc left till “L”
; Copy from L till R after 11

This restricts the ability to gcncratc mcmbcrs of VS
such that V only products symbols outside itself
containing the symbol “I.,” in state S,, and S, ~, , and
thus thcsc arc the ONLY states in which rcplica-
tion can take place. Since S,, can only write “L” if it
is already prcscnt, it cannot bc used to write a virus
that was not previously prcscnt.

[~EbI[VS(S, G s G S,)
[not[M’ halts at time r]]

and [PM(f+ 1) not within V]]]

341

F. Cohen/Computational Aspects of Computer W-uses

If the execution of M’ on V’ ncvcr halts, then S,, _ ,
is never reached, and thus (M,V) cannot bc a virus.

(Viz E TPs.t.Z,, # “L”]
[M run on Z at time t]

=-+ [M halts at time tt I]
[(M’,V’) Halts] iff

[atmkt.S,=S,,+,]
thus [not(M’,V’) Halts] - [(M,V) 4 VS)]

Since S, _, replicates v after the final “K” in v, M’
halts irnplics that V is a viral set with rcspcct to M

[3t ElNs.t.S,=s,,_ ,] ==+

and fro!I?c~l~~~!vI s ivi11
[‘6+ Vv %= V] ==+ [(M,V) E VS]

thus [(M,V) E VS] iff [(M’,V’) Halts]
and by [2]
[14DETM

[~M’ETM[~v’ETs
I) [D halts] and
2) [S,,(t) = s,] iff [(M’,V’) halts]]]]

M: S,,,L S,,, L
S,,,clsc

SC,,
~pY(“~,“II’.,“~.)z

s 0” L(“L”)

S, CPY (((l”,“r”,“lv)

S1 L(“L”)

S, R(“r”)

S, Si r
Si

S,
$IL’,)

S

S:l

1q “K)

S,_, “R”

S,-3 gcncrate(v’)

assunlc [v’ is a virus w.r.t. M]
since [S,,, is reached] iff [(M’,V’) halts]
thus [v’ is gcncratcd] iff [(M’,V’) halts]
Q.E.D.

thus
[ADETM

[VMETM~VETS

1) [I> halts] and

2) [S,,(t) = s,] iff [(M,V) E VS]]]]
QE.D.

WC now answer the question of viral “evolution”
quite easily by changing the above cxamplc so that
it replicates (state 0’) before running V’ on M’, and
generates v’ iff (M’,V’) halts. The initial self-repli-
cation forces [(M,V) E VS], while the generation of
v’ iff (M’,V’) halts, niakcs the question of whether
v’ can bc “cvolvcd” front v undccidablc. v’ can bc
any dcsircd virus, for exaniple v with a slightly
diffcrcnt sequence V” instead of V’.

Lcninia 6.1:
[KJETM

[v(M,V) E VS
[VVE V[t/v’

1) [D halts] and

2) [S(t)=%] iff[v z 1v’I]]]]]
sketch of proof by demonstration:
nlodify machine M above s.t.:

; if “L” then continue
; else halt
; replicate initial virus
; return to replicated “L”
; Copy froni 1 till r after K
; left till “L”

_. 1

-tl

; right till “11”
; nlovc to start of (M’,V’)
; the program M’ goes here
; move left till “L”
; move right till “K”
; get into available space
; and gcneratc v’

342

Computers and Securify, Vol. 8, No. 4

WC are now ready to dctcrminc just how powerful
viral evolution is as a means of computation. Since
WC‘ have shown that an arbitrary machine can bc
ctnbeddcd within a virus (Thcorcrn o), we will now
choose a particular class of rnachincs to cmbcd to
get a class of viruses with the property that the
successive tncrnbcrs of the viral set gencratcd from
arty particular tncmbcr of the set, contain subsc-
qucnccs which arc (in Turing’s notation) succcssivc
iterations of the “Universal Contpuring Machine”
[2]. The succcssivc tncmbcrs arc called “evolutions
of the previous nlcnibcrs, and thus any nutnbcr
that can bc “computed” by a TM, can bc “cvolvcd”
by a virus. WC thcrcfore conclude that “viruses” arc
31 least as powerful a class of computing niachincs
as TMs, and that thcrc is a “Universal Viral
Machine” which can cvolvc any “computable”
number.

SXI N 0 1)

Thcorctn 7:

[~M’E TM [~(M,v) E vs
[V’iGov

111111
[[v “e~olvcs” into v’] and [XC v’]]

Proof by dctttonstrarion:
by [z]:

[Sov
[KvE {O, I }’ [A-E HM,]]]]]]

Using the original description of the “Universal
Compuring Machine” [z], WC modify the UTM so
that each succcssivc iteration of the UTM intcrprc-
tation of a “I).N” is done with a new copy of the
“D.N” which is crcatcd by replicating the tnodificd
version resulting front rhc previous iteration into
an arca of the tape beyond that used by the prc-
vious iteration. WC will not write down the cntirc
description of the UTM, but rather just tltc
rclcvant portions.

b:
b,:
anf:
.

ov:

f(b,,b,,“::“)
R,R,P:,R,R,PD,R,R,PAanf

anf

; initial states of UTM print out
; DA on the f-squares after ::
; this is whcrc UTM loops
; the intcrprctation states follow
; and the machine loops back to anf

WC niodify the machine as in the case of Thcorctn
6 cxccpt that

WC rcplacc:
ov: anf ; got0 “a&

with: ov: g(ov’,“r”) ; write an “r”
ov’: L(“L”) ; go left till “L”
ov”: CPY(,,L”,“R”,“R”) ; rcplicatc virus
ov”‘: L(“L”) ; left till start of

the evolution
0~““: R(“r”) ; right till

tnarkcd “r”
0~““‘: anf ; got0 “anf

and [Q.,,[I,!,, =“lY] ==+
(ntovc right 1, write “K”, tnovc left I,
continue as bcforc)

The niodification of the “anf” state breaks the nor-
mal interpretation loop of the UTM, and rcplaccs
it with a replication into which WC‘ then position
the tape head so that upon return to “an? the
machine will opcratc as before over a different por-
tion of the tape. The second modification ensures
that from any state that rcachcs the right end of the
virus “R”, the 11 will bc tnovcd right one tape
squat-c, the tape will bc rcpositioncd as it was

343

F. Cohen/Computational Aspects of Computer Wruses

and M as:

SXI N 0 11

S,,,L S, L +l ; start with “L”
S,,,clsc s,, else 0 ; or halt
s,... ; stam from modi&d UTM

Fred Cohen rcccived a 13,s. dcp~ in

electrical cnginccritig from Carllcgic-

Mellon University, m 1077. an M.S.

d .‘-o cgree 111 1nt rmatloll sc1cncc frot11 the

University of Pittsburgh in I w I, and ;1
Ph.1). dcgrcc in electrical cnginccring

frotn the University of Southern Cali-

fornia in 1980. He was a professor of

Computer Scicncc and Electrical Engi-
2 nccring at Lchigl! Univcrsiry from Jan11-

sty I%5 through April 1’987, a proforor of Elcctricai and

Computer Engineering at The Univcrsiry of Cincinnati from

Scptcmbcr 1987 through to Ikctnbcr 1988, and is currently

IXrcctor of The Radon Project in Pittsburgh. Hc is d nwnbct-

of the ACM, IEEE, the ASEE, and the IACR and a mctnber of

the international board of rcvicwcrs of the IFIP/TCl I iournal,
Chputrrs GSrcurity.

Dr. Cohen has published over 20 professional articles, has

recently completed a graduate text titled Irrtrodrrctory Injwmnrion

I+otectiorr, and has designed and implcmmtcd ~~umcrous

devicca and systems. Hc is most well known for his ground-

breaking work in cotnputcr viruses, where hc did the first in-

depth nlathematical analysis. performed many startling

cxpcrimcnts which have since been widely confirtwd, and

dcvclopcd the first protection mccbanistns, many of which xc
now in widespread USC‘. His current rcscarch interests arc con-

ccntratcd in high integrity sy~rctns.

344

